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1. INTRODUCTION

Since the early development of the kinetic theory of gases by Maxwell
and Boltzmann more than a century ago, it has been wniversally accepted
that most 6bserved physical and chemical rate phenomena in fluid systems
are due primarily to intermolecular collisions. The analysis of inter-
molecular collisions both experimentally and theoretically plays a funda-
mental role in the quantitative understanding of these rate processes.

When particles (molecules) collide, several processes can occur.

The most simple one is elastic scattering where the particles are simply
scattered without any change in their structure or internal state. In-
elastic scattering where the particles undergo a change of their.internal
quantum state during collision is more complicated. These processes in-
clude pure rotational excitation, vibrational + rotational excitation and
electronic + vibrational + rotational excitation. When the collision
energy is high enough, reactive scattering may occur (1-3).

With the development of molecular beam techniques (4-8), one can
observe the outcome of individual molecular collisions. The most detailed
type of information obtainable from a molecular beam experiment is the
differential cross section for the scattering of molecules between
specified internal quantum states (9). In nonrigorous language, the dif-
ferential cross section corresponds to the probability that two particles
with known precollisonal quantum states, which are approéching each other
with known velocitieé, are scattered through some definite solid angle

and end up in specified postcollisional quantum states (10). Detailed



results of this nature provide us the most direct information concerning
the interaction potential energy of the collision partners.

The main role of molecular scattering theory is for interpretation
and correlation of experimenfal data in terms of the intermolecular poten-
tial energy functions. Given these functions, the theory can be used to
predict quantities for which no experimental results are available.

The first detailed treatise on classical and quantum mechanical
scattering theory is the 1933 edition of the monograph of Mott and Massey,
"The Theory of Atomic Collisions" (11). Collisions between atoms, elec-
trons and ions are the main concern of this monograph. Only a small ac-
count of the special features that arise when at least ome of the colli-
sion partners is a molecule is covered. Quantum mechanical scattering of
particles with internal structures was discussed in general terms by Lipp-
mann and Schwinger (12) in 1950 and by Gell-Mamn and Goldberger (13) in
1953. The conceptual approach to the theory is very simple. Starting
from the potential energy functions, the Schrodinger equation for the
nuclear motion of the particles can be solved. To do this, the wave func-
tion of the system is expanded in a suitable basis set. The resulting
coupled second-order differential equations (or an equivalent set of in-
tegral equations), which are usually referred to as close~coupling (CC)
equations, can then be solved using appropriate boumdary conditions. From
the (usually numerical) solution, the scattering (S) matrix or the tramnsi-
tion (T) matrix can be generated. These quantities are defined as fol-

iows. ILet Has be the Hamiltonian for the separated molecules, and V be



the interaction potential. The full Hamiltonian for the system is

H= Has + V. A (1.1)

The internal and the relative nuclear coordinates are denoted by r and R,
respectively. 1In the coordinate representation, the asymptotic state
wave function‘ of H  is <r _I_{_IM? = ¢M(£) ¢, (R) where M is the internal
molecular state and k is the relative trm;itional momentum. The full

+ .
scattering states <r _gIM k= tp;&(s R) corresponding to q)M(_r_) ¢k(§) are

given by
+ *
Yg(x B = <r RlQ7|Me>, (1.2)
+ iR -
where & = Lim e+mt e ma.st are the Moller operators. The corresponding

t+Fo
T and S-matrix elements are given by

+ . +
<Mk|T™ [M'k'>= <Mk|WQ"|M'k'> (1.3)
and

Qk|sH|M'E'> = AkF|MEE> = 8y, S(k') - 2TIS(E-E') <Mk|TCM'K'>,

(1.4)

where the energy E (E') corresponds to |Mk> (|M'k'>). The differential
cross sections and parameters related to various macréscopig: rate phenom-
ena can then be determined from the S/T matrix (14-15). Given sufficient-
ly accurate potential energy functioné, it is still an enbmous task to

solve those CC equations. In principle, there is an infinite number of



coupled equations, but in practice, it is possible to truncate the num-
ber of functions in the basis set, which in turn limits the final number
of equations to be solved (10).

The CC methods outlined in the last paragraph can be formulated
quite generally for both inelastic and reactive collisions. In order to
obtain accurate results, CC methods usually require a large amount of
computer time. Because of this limitation, electronic degrees of freedom
are often excluded in these studies and the main focus of the CC studies
is on the rotational and vibrational excitations. For more discussions on
CC methods, the reader is referred to articles by Takayanagi (16), Balint-
Kurti (10) and Lester (17).

In order to avoid the tedious and time consuming exact quantal close-
coupling computations, approximate methods which are best suited to specif-
ic circumstances have been developed in the last ten years. Among these
methods are the sudden approximation which traditionally involved the
exact solution of coupled equations resulted from approximating the
Hamiltonian. Historically, sudden approximations were developed to treat
rotational degrees of freedom. There are three main forms of the sudden
approximation. The first form is the CS approximation which includes the
-labeled, jz-conserv:‘ng coupled-states (CS) approximation developed by
McGuire and Kouri (18) and the J-labeled centrifugal sudden (CS) approxi-
mation developed by Pack (19). In the CS, the orbital angular momentum
operator is approximated by an eigenvalue, hz_f(f}l) . Various forms of CS

exist and they depend on exactly how % is chosen. This approximation es~



sentially says that the relative kinetic energy is sufficiently large so
that the precise value of the centrifugal potential is unimportant. The
second form of the sudden approximation is the R.Z-conserving energy sud-
den (ES) approximation considered by Chu and Dalgarno (20), Secrest (21)
and Khare (22). Here, the internal rotation angular mémentum operator is
approximated by an elgenvalue, h25(3+1). In effect, the rotor state en-
ergies are taken to be degenerate. This approximation is expected to be
good when the rotor level spacings are small compared to the relative
kinetic energy. The last form of the sudden approximation is the infinite
order sudden (I0S) approximation which is due mainly to the development by
Tsien and Pack (23). In the 1I0S, both the orbital and internal rotation
angular momentum opefators are reﬁlaced by effective eigenvalues. As in
the CS, the exact form of the I0S depends on how 2 is chosen. _

To elucidate the structure of the scattering equation in the ES
approximation, let r be the relevant angular variables of the internal
motion of the molecules. If we approximate the angular momentum operator
by effective ej.genvalue form, the resulting Green's operator G° is local
in r. In the ES approximation, we them have Gi(rlr') = G;'B(r-r'), where
k is the relative translational momentum for t—he collision system. From

the Lippmann-Schwinger equation (12), it follows that the T operator must

also be localinr and satisfy

T @ =Y @+ f &V (D) G Ty (D). (L5



Thus, the Lippmann~Schwinger equation is greatly simplified and the num-
ber of (effectively) coupled equations resulted ffom this approximate
Hamiltonian is greatly reduced (24). This simplification results in a
dramatic reduction in the computational time required for calculation of
transition probabilities. For more discussion on the early development of
the sudden approximatioms, ﬁhe reader is referred to a review article by
Kouri (24).

Besides the computational advantage, one particularly useful conse-
quence of the ES and the IOS is the existence of factorization relations
on the scattering i.nformétion -- namely, S and T matrices, degeneracy
averaged cross sections which include both the differential and integral
cross sections, and the thermal (averaged) rate éo_nstants (22,24-29), for
rotational excitation. In these approximations, the scattering informa-
tion for all possible transitions is not independent, but is completely
determined by the transitions out of (or into) the ground state. Thus,
for example, the T-matrix elements can be written as a linear combination
of T-matrix elements for transitions out of (or into) the ground state.
In the case of degeneracy averaged cross sections, and thermal rate con-
stants, factorization relations hold exactly only for some systems and
approx;f.mately for others (30-31). The key feature is that the coeffi-
cients in these ground state factorization relations are spectroscopic
(i.e., completely independent of the collision dynam:ics of the system).

The restriction of using ground state data as "input" in the fac-

torization relations has been removed. This was first achieved by -



Hoffman et al. (32) for the atom-diatom rigid rotor system. They first
rewrote the factorization relations for the degeneracy cross sections in
matrix notation, which facilitated the required inversion. Factorization
relations using arbitrary input rotor states were then derived. This
method will be referred as the "matrix" approach. Occasionally, we may
want to distinguish between factorization relations using ground state
or an arbitrary state as input data. The former will then be referred to
as the ground state factorization relations and the latter as general
state factorization relations. In.the same paper another method, based on
the orthogonal properties of the (Wigner's) 3-j symbols (33), was used in
derivizgg general state factorization relations for the T-matrix elements.
The starting point of the derivation is also from the groumd state fac-
torization relations. From now on, this method and an analogous method
based on the orthogonal properties of the 6-j and 9-j symbols (33) will
be referred to as the "orthogonal" approach.

So far, we have discussed the ES in the context of approximating
the internal rotation angular momentum operator in the Hamiltonian by a
degeneracy assumption. This unphysical assumption is a rather "re-
stricted" way to state the approximations. A less restrictive statement
which is expected to be valid for a large number of scattering systems is
that the internal coordinates r of the full collision system (e.g., the
angular variables in Eq. 1.5) change little during the time in which
the interaction potential acts. It can be shown that this implies the

T operator is local in r (34). However, the local T assumption does not



imply the severe assumption of local Green's operator. In fact by in-
tegrating the Lippmann-Schwinger equation over r' using the locality on
T, we now obtain

TE _k.l (r) = vl‘. .E'(r) + Idr' J'dE" Vk k"(r) Gin(rlr') T.lﬁn_ls'(r'). (1.6)

Here, locality on T has not required locality of G;,,(rlr'). In this new
description, the ES T-matrix is local in the inter:al coordinates of the
colliding particles (30-31,34-35). '

The CS T matrix is local in the relative angular variables (which
most naturally appear as arguments of the spherical harmonics in a spher-
ical wave basis) and the I0S T-matrix is local in both the internal
coordinates and the relative angular variables (35). .Equations analogous
to Eq. 1.6 are also true in both the' CS and IOS épproximations. It is
worth mentioning that using this new definition, sudden approximations
can be easily adapted to processes other than just rotational excitation
(30-31,36-37).

Chan et al. (31) explicitly used the local nature of the T-matrix
in the ES to derive the general state factorization relations, which in-
clude the ground state factorization as a particular case, for complete-
1y general, nonreactive systems. In this work, analytic techniques were
used; this method will be referred as the "analytic" approach. A con-—
sequence of the work of Hoffman et al. (32) and Chan et al. {31) is the
realization of the existence of coﬁsistency conditions which also involve

spectroscopic coefficients. These conditions are linear dependency rela-



tions in the set of the scattering information out of a single (excited)

state.

Using the gemeral state factorization relations rather than the
ground state factorization relations has two advantages if the ultimate
goal is to use the relations to predict exact scattering information.
First, predictions of degeneracy averaged cross sections, not ES derived,
generally become less accurate as the input state is removed from the
state out of which the transition being predicted arises, and hence the
choice of input state influences the accuracy of predictions (32). Sec~-
ond, input cross sections from experiments might well be known more ac-
curately for higher states than for ground state.

Finally, in the ES, locality of the T operator in the internal
coordina;es, r, implies factorization for the T matrix. The converse
statement is also true. It is also true that locality in T implies the

scattering wave functions (p:'k(_x_'_ R) can be written in the form
+ _ +
Y (2 B = 0@ 5 (z|R (1.7)

and the converse of this statement is also true. The proofs of these
statements are given in Appendix A.

The exact factorization relations and consistency conditions have
been investigated by Beard et al. (34) recently for both nonreactive and
reactive scattering. Derivation of these relations is based on the local
nature of the scatttering potential. Although the coefficients in the

exact relations are no longer spectroscopic, their basic structure is
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still the same as in the ES. For the nonreactive scattering, the reduc-
tion of the exact relations to the ES form is investigated. Earlier,
DePristo et al. (30) in their energy corrected sudden (ECS) factorization
study (which attempts to incorporate both the internal energy level spac-
ing and the finite collision duration into the sudden S-matrix) proposed
that the relative kinetic energy of the initial state of the input and
predicted S—-matrix must be the same. Their argument is based on the fact
that, for spherical potentials, the exact S matrices for all purely
elastic transitions should be equal, provided they are evaluated at the
same incident relative kinetic energy. This feature éutomatically re-
sults vhen the reduction of the exact factorization to the ES limit is
made (34). Beard et al. (34) also pointed out that in both the exact and
the ES factorization relations T-matrix elements used as input data are
in general half-off-shell (i.e., the T-matrix element involves states
with different total emergy). Other approaches to exact factorization
have been considered in various work (38-40).

Most recently, the exact factorization relations and consistency
conditions have I;een considered for the dissociative (36) and nonadia-
batic (37) processes. In these works, the reduction to the ES form is
discussed.

In the kinetic theory of gases, transport and many bulk phenomena
are described by theBoltzmann equation (41-42). Quantum mechanical
scattering theory is incorporated in this theory via the quantal form

of the Boltzmann equation, the Waldmann-Snider equation (43-44), whiéh
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involves the S/T-matrices. From this equation, expressions of generalized
phenomenological cross sections are derived (45-46). Recently, sudden
approximations have been considered :In calculating these cross sections
(46~53). Coombe and Smider (51) and Snider et al. (52-53) have developed
factorization relations for these cross sections starting from the ground
state factorization relations of the S-matrix.

We have mentioned that the existence of factorization relations and
consistency conditions is a direct consequence of f.he local nature of
the T (or, for that matter, any) operator. The Born approximation (BA),
the distorted wave Born approximation (DWBA) and the distorted wéve
energy sudden (DWES) approximation (54) all involve local operator. Fac-
torization relations and consistency conditions therefore exist in these
approximations. Furthermore, the coefficients in these relations are
also spectroscopic. We now briefly discuss the nature of these approxi-
mations.

In the (first) Borm approximation, the T operator is approximated
by V. Assuming a local potential, then the Born approximation T operator
is local in both r and R. In general, the Born approximation is appro-
priate for weak potentials and high collision energies (55).

Next, we consider the IWBA and the DWES approximations. Often it is
convenient to split the full potential V into two parts V = Vo + V' where
Vo is the central potential (which affects only the relative translational
motion). Usually, Vois chosen in such a way that the distorted wave

function for the scattering potential Vo alone accurately describes the
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+
elastic part of the process. let w;uk(_r_ R) be the distorted wave fumc-

tions for the Hamiltonian Ho = nas + Vo. Since Vo does not depend on r,

+
H  1is separable and Y, (r R) can be written in the form
+
Y Mk(r B = <z R|Mk > = ¢,(0) NG (1.8)
In terms of this two potentials decomposition, Eq. 1.3 becomes (55)
+ + +
<Me|TT MK > = k| T_[M'K'> + <Mk F| T MK . (1.9)

+
In the first term, T; are the T-matrices associated with Ho' The second

term involves matrix elements of
+ +
= V'Q'-, (1.10)

where Q' = 2im e iHot between the distorted wave eigenstates
T

v Mk(r R) of H . Using Eq. 1.8, for inelastic tramsitions, Eq. 1.9

reduces to
<Mk|'rﬁln'k'> = <Mk $|T'1|M'k'+> (1.11)
— — —0 —o- hd hd

In the DWBA, T'i in Eqs. 1.9 and 1.1l are approximated by V'.
Thus, the DWBA T operator is local in r, because of Eq. 1.8 (see
Appendix A).

In the DWES, as the name implies, the intermal coordinates are as-
sumed not to change significantly while the interaction V' operates.

If vo is the long range part of the interaction potential and V' is the

impulsive part, the IWES is expected to be good for reasonably high col-
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liding energies. In general, DWES should increase the range of applica-
bility of the ordinary ES. Using the analysis of Beard et al. (34), it
follows that T'i are local in T. Assuming locality of 'I’t in r, it is
showm in Appendix A that the full scattering wave functions have the fac-
torized form of Eq. 1.7. This in turn implies locality of the full T
(see Appendix A). Therefore, the DWES T operator is local in r.

The main objective of this dissertation is to study general state
factorization relations and consistency conditions. The main 'emphasis
will be on the ES, although other approximations ment;ioned above will
be considered. The three different approaches in factorization (i.e.,
matrix, orthogonal and amalytic approaches) will be discussed. The
analytic approach will be considered in Chapter 2. Several nonreactive
systems will be used as illustration. The matrix approach is discussed
in Chapter 3 using thé same collision systems considered in Chapter 2 for
illustration. Numerical results of using ES factorization relatioms to
predict cross sections and thermal rate constants are presented in Chap-
ters 3 and 4. The 1n15ut data used are generated from methods other than
the ES. In many physical systeﬁs, scattering information can be inter-
polated or extrapolated from two or more sets of input data to a much
higher accuracy than they can be predicted from a single set of input
transitions (32). This feature is discussed in detail in Chapter 4.
Chapters 5and 6 are devoted to the orthogonal approach and its usefulness
in generalized phenomenological cross section factorizations. The ES

factorization reldtions and consistency conditions for dissociative col-
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lisions and their usefulness in predicting vibrational enhancement/in-
hibition at a particular continuum state are discussed in Chapter 7. The
exact factorization relations and consistency conditions of Beard et al.
(34) and their reduction to the ES form are briefly reviewed in Chapter

8. Also in that chapter, the exact factorization for the dissociative
collisions and its reduction to the ES form are discussed. There are
still many unresolved questions concerning factorization in molecular col-

lision theory. Some of these will be listed in the last chapter of

the dissertation.
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2. ANALYTIC APPROACH TO FACTORIZATION

2.1. Factorization and Consistency Conditions for

Local Operators

We have mentioned in Chapter 1 that factorization relations and
consistency conditions exist for local operators. In this section, we
will develop these relations. Consider an operator W (e.g., the S or T
operator) which is local w.r.t. a subset of the coordinates {R} of the col-

lision system. Let Hl be the Hilbert space corresponding to {R}. Ex-

plicitly, we have

where §(R-R') is a Dirac delta function.

Using Eq. 2.1-1, factorization relations and consistency conditions
may be readily derived following the technique of Chan et al. (31). Let
{qh(n)} be a complete orthonormal set of functions on Hl. Since WR ¢E(R)

is in Hl, we can expand this function in terms of {q)M(R)} to obtain
W 5(R) = !21<le|1~1> 0y (B« (2.1-2)

If M is a continuous variable, the summation is replaced by an integral
(see the dissociative collisions discussed in Chapter 7). From Eq.

2.1-2, we 'imediately obtain the consistency conditions on the W-matrix:

elements out of the M state (31)

lz{ <M|w|w> oy(R" =0, (2.1-3)
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where R' is a zero of ¢ﬁ(R)' If derivatives of (bﬁ(R) at R' also vanish,
then consistency conditions involving derivatives of ¢y evaluated at R'

may also exist. For more discussion, see Ref. 31 and later sections of

this chapter.

To derive the factorization relations, we start with the trivial
identity

*
by (R) ¢M.(R)

<M |w|M'> = JdR(WR ¢5(R)) o =® (2.1-4)

and substitute in Eq. 2.1-2 to obtain

By (B Gy (R) e (B
o
oD

<M_|W|M'> = [dR Y <l . (2.1-5)
M

1f IdR and 2 can be interchanged, a factorization relation for general
W-matrix elixents in terms of matrix elements out of the M state results.
If we consider M to be the unique positive ground state (56), them the
interchange of IdR and z is easily justified since no troublesome zeros
appear in cpo(R). For ﬁu# 0, if the integral involving singularities asso-
ciated vith the zeros of ¢E(R) is regularized, Chan et al. (31) have shown

that the interchange of JdR and ] is justified. The resulting factoriza-
M
tion relations are (31)
<M {WiM'> = 124 faqe' Im]MoM <M|w|¥> (2.1-6)

where

(B 4y (B 4 (B
o)
=)

[a(M' [¥) yu= J.dR + CCI. 2.1-7)
o
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Here, [ 'dR indicates the above mentioned regularization. There are many
ways to do this. In Ref. 31 the use of Cauchy principal value integrals
for simple pole singularities is illustrated and a gemeral procedure in-
volving subtraction of suitable linear combinations of consistency condi-
tions (to obtain regular integrals) is also given (see Chapter 3). The
CCT term in Eq. 2.1-7 indicates that the factorization relations Eq.
2.1-6 are invariant under the addition of suitable linear combinations of
consistency conditions. For further discussion, the reader is referred
to Ref. 31. In the nonreactive system, the integral of Eq. 2.1-7 is
well behaved at infinity (31), but in the reactive system, the integrand
may diverge at infinity. 1In this case, Mo’ M' and M have to be chosen
such that the integrand converges at infinity. We will return to this
situation in Chapter 7 when the dissociation system is discussed.

We have derived factorization relations which have "input data" de-
rived from transition out of an arbitrary state. Factorization relations
which have input data derived from transition into an arbitrary state can
be derived by interchanging the roles of the indices of the W-matrix ele-~
ments. Thus, given any column or any row of the W-matrix, the rest of
the matrix can be generated through the factorization relatioms.

We remark on some general properties of the factorization matrix

A(M'|M). Specifically (31),

A M1y, 5 = Sy > | (2.1-8)
] [+]
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AM'[M') A(M'[M) = A(M"[®) + ccT (2.1-9)
and for Cauchy principal wvalue integral choice of regularization
A(M[M) = I. (2.1-10)

We have shown that if W is a local operator, then the factorization
relations and consistency conditions exist. The converse stétement, that
the W-matrix satisfies factorization relations and consistency conditioms
implies a local W, is also true. The problem is to construct WR'satis-

fying

<u|wju'> = fcm By (B W 6 (B, | (2.1-11)
or equivalently

124 ay (R <|wiu'> = W ¢, (B, | (2.1-12)

for all M, M'.
Suppose we comstruct Wy by choosing M' = M in Eq. 2.1-12. Then what

must be shown in that the same function results fron' all other choices

M' # M. Consider for M' # M,

Vo (R ] ¢, (R) <Mw|u'>
M

%*
v 0RYD GRD G Ry
= Y/ (R) %(,2, Py (R) j aR' & =) )<L|W|M>

= 1/¢g(R) ] ¢, (R <L|w[M> = Wy | (2.1-13)
L
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as desired. To obtain the last line in Eq. 2.1-13, we have used the clo-
sure property of ¢M to do the sum on M.

1f d)M(R) is in temsor product form

G (R = .¢M1(Rl) ® 4y (%) (2.1-14)
R= (R, R), M=M, K,

then the consistency conditions on the W-matrix elements <M M, le—ﬁlﬁz>
is of the form (31) .

1 MM |W[MM> ¢ (R]) =0, fors =1, 2 (2.1-15)
M s
[

where R; is a zero of ¢§ (R). In this case, the factorization matrix is
s

in tensor product form (31)

Aoy M M) = Aaq M) @ A0 (). (2.1-16)

The factorizations of the T-matrix in the approximations referred
to in Chapter 1 are summarized in Table 2.1. The second columm gives the
coordinate in which the T-matrix is local and the third column gives the
corresponding state label. We use r for the internal coordinates of the
colliding particles and R for their relative separation (and ﬁ for the
direction of R). The complete set of expansion functions in Eq. 2.1-2
for each different approximation is given in the fourth column. Finally,

the form of the factorization matrix elements for each approximation is

given in the last column of the table.



20



21

Factorization matrix

Expansion set elements
{4,®} | Wear iy
v, @m0} o ®ene Dlg 0
@ 81" 1@} E Bl WIENEDY,,
{o,(0) ® (2m /% IRy (=S [ Iy e Sk -EHE" k)
(4,0} 6% 0B

{40} [ (' 1], o
[+)
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In the ES, the T operator is local in the internal coordinates r.
So we choose R = r in Eq. 2.1-1 and {¢M(3:_)} is then a complete set of
orthonormal internal state wave functions. The factorization relatioms

of the ES T—matrii elements are
Es — ——
<M |T|v'> = ; A” o M) ]MoM <M|T|™> ~(2.1-1D)

where the factorization matrix elements [__éEs(M' |§) ]M M are given by Eq.
(")
2.1-7 after replacing R with r.

The full Hilbert space for the collision system is equal to Hint ]
H

e rans® where Htrans is associated with the translational degrees of

freedom. Let k be the relative momenta, which are state labels in

Htr ang® 34 k be the corresponding wave number. From the analysis of
‘Beard et al. (34), after putting into the state labels of Htrans’ the
T-matrix element on the l.h.s. and the r.h.s. of Eq. 2.1-17 becomes

<M EOIT[H'_I_(_B and <M3°|Tlﬁ k'>, respectively (see Chapter 8). The
T-matrix elements used as input data in Eq. 2.1-17 are in general half-
off-shell even if k and k' are chosen such that the predicted T-matrix
elements are on-shell.

In the CS, the T-matrix is local in ﬁ If we use a spherical wave
basis (57) for the relative translational motion, then a complete set of
relative orbital angular momentum states (f.o.a.m.s.) {12‘ Ym(ﬁ)}, given
in terms of spherical harmonics is a suitable expansion set. The phase
factor 12' is in according to the phase convention of Arthurs and Dal-

garno (see Ref. 58 and 59). Here, factorization matrix connects T-matrix
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of transitions out of a given r.o.a.m.s. to transitions out of amother
r.o.a.m.s. The internal state labels and the relative wave number (mag~
nitude) labels are arBitrary, but fixed. Since the kinetic energies
depend only on the relative wave numbers, which are fixed in the fac-
torization relation, the input T-matrix elements are on-shell if the pre-
dicted T-matrix element is on-shell.

In the I0S, the T-matrix is local in both r and ;( Hence, a com—
plete set of temsor product form ¢u(r) @ ig' Y‘m(f() is a suitable expan-
sion set. The consistency conditions are given by an expression analogous
to Eq. 2.1-15 and the factorization matrices are im temsor product form
of éEs(M' ™ @ gcs(ﬁ,')«' |[£ ). Some furtter simplification is possible
using the rotational invariance of the colliding system. This will be
discussed in Sec. 2.2.2.

In the BA, the T-matrix is local in r and R, i.e., is local in the
coordinate representation of the full Hilbert space H. Hence, each func-
tion in the expansion set is in tensor product form d)M(_r_) e (21r)_3/2 eil?g
where the second factor in the product is the plane wave state of the re-
lational translational motion. The consistency conditions are given in
the form of Eq. 2.1-15 and the factorization matrix elements are in the
fornm [gES(M' ) ]M M S(k-k+k' -ko). The Dirac delta 8(k-k+k' —ko),
which results fro:\ the factorization matrix integral on R, means that
the input T-matrix elements have the same momentum transfer as the pre-.

dicted one.

We have shown in Chapter 1 that both the DWBA and the IWES T-matrices
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are local in r. Hence, the form of the factorization matrices and the
conéistency conditions in both approximations are the same as in the ES.
The fact that IWBA factorization relations have the same spectroscopic

coefficients as in the ES was first recognized by Coombe and Snider (51).

2.2. Applications

In the following sections, T-matrix factorization in a few nonreac-
tive collision systems will be used to illustrate the analytic techniques
that have been discussed. For discussion on other more gemeral systems,
the reader is referred to Ref. 31. The nature of the zeros of the input
state ¢ﬁ(R) in Eq. 2.1-7 and the number of consistency relations in each
system will be discussed in detail. The focus of discussion will be on
the ES with some brief consideration of the CS. This discussion to the

other approximation given in Table 2.1 is easily generalized.

2.2.1. Collinear atom-harmonic oscillator

We first comsider a collinear atom~harmonic oscillator system. The
oscillator has a potential well of infinite width. The vibrational
coordinate x is the only internal coordinate and ranges from - to +<.

The internal state wave functions are given in terms of Hermite poly-

nomials
1 1/2 vl

o = | SV 2 E (/&%) (2.2-1)

where o is the usual parameter. The quantum number m is the vibrational

state of the oscillator and corresponds to the number of nodes in the
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wave functions. All the zeros are simple (60-61). The consistency con-
ditions of the T-matrix elements <m|T|m'> in the ES are (31)
¥ <m|T|m'> (2" m!)"llz um(/a x:;,) =0,i=1tonm (2.2-2)
m
where xi. is the i'® zero of L (x) and there are m' of them.
The m' comsistency relations for a general oscillator are similar
to those of Eq. 2.2-2 and can be considered as a set of linear equations
for the m' downward transition matrix elements <m|T|m'> where 0 < m < m'.
Provided the set of equations is nonsingular, it can be solved so that
the consistency conditions become expressions for the T-matrix elements
for downward transitions out of the m' state in terms of matrix elements
for upward transitions. In the specific harmonic oscillator case of
Eq. 2.2-2, these expressions can be made to assume a particularly simple
form. We multiply Eq 2.2-2 by wi. (22' 2.!)-1/2 Tf—1/4 Hz(/c_tx:;.) , where
2 < m' and w:;' is the weight of the ith zero for the Gauss-Hermite inte-
gration of order'ﬁ, then by summing over i (using the fact that the
Gauss~Hermite integration has a precision 2m -1 (62)) we reduce the
consistency conditions to the form (31)

m' .
<t|Tla'> =-1 E(2¥e1y? Z @ty 3] vl 06 =) B (Ex)] <alTla’>,
m=2m'- 2 =17 @’ m B

(2.2-3)
for £ <m'or £=0 to m' - 1.

This is the desired result.
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The general form of the factorization matrix elements, written us-
ing Cauchy principal value integrals (denoted by ]{dx ( )) to regularize

simple pole singularities of the integral are (31):

o 0,00 0,00 b0 .
L™ = () - mO T ? -
(A" (n' [m) ]mom dx =D +gcﬁ (1) o (xp. (2.2-4)

The constants C;'mo (i) are arbitrary. The integral of the Cauchy
principal value integral is a ratio, Hm Hm Hm' /Hﬂi of Hermite polynomials'
multiplied by the Hermite polynomial weighz function. The correspond-
ing integral can be evaluated and is given in terms of Dawson's inte-
gral in Ref. 31.

Finally, we remark that for problems where the range of the vibra-
tional coordinate is restricted because the potentiai well has finite
width (e.g., a square well), the "nodes" at x = i* for an infinite width
well now occur at the finite end points. Since ‘the asymptotic behavior
of the wave function at these points is essentially state independent,
from Eq. 2.1-2 clearly no additional consistency conditions are intro-
duced. The previous discussion goes through virtually unchanged (where
the state label again gives the number of interior nodes). A point where
we have to be careful is in considering the effect of dissociation. The
general considerations we have given are presumably all right when the
bound states are deep in the well, but when this is not the case contribu-
tions from the continuum states in the factorization relations are im—
portant. In this situation, the expansion set in Table 2.1 should in-

clude the continuum states. We will return to the dissociative problem

in Chapter 7.
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2.2.2. Atom-diatom rigid rotor

In an atom-diatom rigid rotor system, we are interested in the
rotationally inelastic transitions. Since the rotor is rigid and
hence vibrational coordinates are ignored. The T operator is local
in the rotor's orientation ; in the ES. The internal state wave func-

tions given in terms of the spherical harmonics can be written in the

form
T) = . = o e— . = = = |
q’M(r) = ij(r) ¢j(x) /2_“_ s T (e’¢ )a M (jm)a X cos 0,
(2.2-5)
where
. 1/2
moy = (-qymtim])/2 J.:JJJ;HL |m] i}
¢j(x) (-1) 2 (G+lm]) Pj (x) (2.2-6)

and 6,9 are the usual polar angles, le is the associated Legendre

function, and the notation [x] = 2x + 1 is used. In Eq. 2.2-5, j is
the rotor state quantum number and m is the corresponding magnetic quan-

tum number. The only zeros of the wave function are in leml(x), i.e.,

in cb?(x). There are j - |m| simple zeros inside the interval (-1, +1)
and (possibly) nonsimple zeros at x = 1. At these poiats, Pilml(x) may

not be analytic in x but always is in z = (1 - xz)l/ 2 and the zeros are of

i

1
order [ml in z. Denote by x = xj " the zeros of m' (x), including end

%
points if appropriate, and assume that each of the set of functions

{¢?(x)}, for all j, is analytic at x;'m' in some parameier zi(x). Let

1:1i be the order of the zero in zy at xi.m.. The consistency conditions on

<jm|T]j'm'> in the ES are (31)
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[}
.t d m = _
;lqml‘r[j n'> |3 2¢j i o, (2.2-7)
j m . zi j'm'

for 0 < ¢ _<_.ni - 1, for each i and for each m. Here consistency rela-
tions with derivatives arise from higher order zeros at the end points,
where the derivatives of ¢m: also vanish. Note that some of the condi-
tions may be trivial if some of the derivatives on the l.h.s. of Eq.
2.2-7 also vanish. For each j', m' and for each m (of which there are
an infinite number of possible choices), the number of consistency rela-

tions from this analytic approach, Na’ is
N, = (G'-|a']) +2 nax (0, |n'|-|n]). (2.2-8)

The first term is from the simple internal zeros and the second term is
from the (possibly higher order) zeros at the end points.
When m = m',

R =3 - o', (2.2-9)

there are no nontrivial consistency relations from the end points. The

consistency condition of Eq. 2.2-7 in this case reduces to

- * ! 1/2 i
jﬁ“ 2 (j“":")! Pgml(xjimt) <jm'lle'm'>‘= 0,

for each m" and for i = 1 to j' - |m"|, (2.2-10)

1
where x;',m. is the ith (internal) zero of P jlml

tions of Eq. 2.2-10 can be considered as a nonsingular set of linear equa-

(¥). The j' - |m"| rela-
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tions for the j' - |m'| downward transition matrix elements <jm'|T|j'm'>
where |m' I <£j <j'. Making use of the Gauss-associated Legendre integra-

tion of order j' - |m'| with precision 2(3' - jm’ |) - 1, and letting

i th

wj.m. be the weight of the i zero, we can rewrite Eq. 2.2-10 in the

form (see Appendix B)
. 1/2
3,1 G, - ="

du'[Tl3'a’> = - =G T w

3=23"~j

m | lm’ |

it mnl 5 Pjo (xj'm') Pj (x vmv)

x o, mrd ERILEES
i 2, |m'

L=~ GGegn®

(2.2-11)
\J \ ]
for |n'| <3 < 3'.
The factorization matrix elements are given by (31)

ES o' |3 . = | m' mo A e '
(a7 " |3 m)jomo,jm ez 2 G l.mjoj [a(m lm)]mom-l- ccT,
(2.2-12)

where

_ 1 2n e
[a(n’ |m)]mm=— I d¢ ——
o
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(2.2-13)

and for values of the m's satisfying the Kronecker delta condition

m my* '
R 41 & ¢jo (=) ¢j.(x).
e E f-l = ¢2¢x)

3

: (2.2-14)
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Because of the condition in Eq. 2.2-13, higher order zeros at x = *1 do
not produce singularities in the integral of Eq. 2.2 -14. Although the
integral converges at these points, consistency conditions still exist
there. It should be remembered that it sometimes happens that the inte-
gral of Eq. 2.2-~14 may be nonsingular at some zero of ({?(x) for all
values of j. In this case it is of course not necessary (although not
incorrect) to regularize the integral (i.e., regularization has no ef-
fect).

The treatment of the CS factorization on T-matrix elements
<2A|T|2'A">, where the state labels are for the relative orbital angular
momentum states, is identical to that in the ES. The only difference
is the phase factor il in the expansion set {i’Q' Y‘m(;{)} (see Table 2.1).
Here, the internal state labels are arbitrary, but fixed, and are sup-
pressed. Finally, it is worthwhile to mention again that the T-matrix
elements input are on-shell if the predicted T-matrix element is on-
shell.

In the I0S, the factorization matrix is in tensor product form of
éES(j'm' E m) ® écs(i?,'l' [I 7). The matrix elements of écs(z'l' I?Z: By
are given by formula given in Eqs. 2.2-12 - 2.2-14, if all ¢§'(x) are
replaced by 124);(.1:). Since the ]0000> state is spherical symmetric in

the coordinate representation, it can be easily shown using rotational

invariance that

<jmeA|T|0000> = 8 __<3jmer|T|0000>. (2.2-15)

S35 Oma



31

Using this condition, the ground state factorization relations are great-—
ly simplified (see Chapter 5).

Finally, in the ES two rigid rotors system, the internal state wave

functions are of the temsor product form

>

By(D) = ¥, 1,m 1)@Y <_§2> r=(r, 5, M= (Gym 3,m)

(2.2-16)
where 1 and 2 stands for molecule 1 and 2, respectively. The treatment

of the T-matrix factorization easily follws and in particular (31)

A2y i (T Tm) = A5G (TE) 8 A5G [T,m,)-

(2.2-17)

(-l

Treatment in other approximation is easily adapted.

2.2.3. Atom-symmetric and atom-spherical tops

The symmetric top and spherical top wave functions may be chosen as

the normalized three dimensional rotational group R(3) matrix elements
(57

~ . iky img
@ = |[H1)7 ot (osy) = oFBm) E—2—,
i o?| I 37 By Jmwm

(2.2-18)
r= (2,8,7), M= (jkm), |k|, |m| < j, x = cos B,

where

.4 11/2
&2 = L o @, (2-2-19)
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and o, B, Y are the usual Euler angles. For nonnegative values of

k-m and k+m (this implies k > |m| > 0), dim(x) is given in terms of the

Jacobi polynomials (57)

1/2 kim k-m
3 (G +K! (§-k)! 1,k 2 2
4a® = | GFwr Go-mr| @ @F® 7 d-2

x P ;l-cl-cm,k-hn) (x). (2.2-20)

For other values of k and m, similar expression can be written down using
the symmetry properties of di-im(x) (57). The only zeros of ¢M(f:) are in
d'il;xn(X)’ i.e., in ¢lj(m(x). There are j-max (|m|, |k|) simple zeros inside
the interval (-1, +1) and (possibly) nonsimple zeros at x = f1l. At these
points dim(x) may not be analytic in x but always is in 2, = (1% 1/2 at
x = *1, where the zero is of order [k ;ml in Z_. Den;)te by x = x;'k'm'
the zeros of ¢§:m'(x) (or di:m' (x)), including end points if appropriate,
and assume that;each of the set of function {cbjkm(x)}, for all j, is
analytic at x;'.k.m. in some parameter Zi(x). Let n:L be the order of the
zero in 2, at x;'k'm" The consistency conditions on <jkm|T|j'k'm"'> are

(31D

dg' km

¢.
273 i
dzi xj Iklml

]
23 <jkm|T|j'k'm'> =0, (2.2~21)
for 0 < 2 < 2t - 1, for each i and for each k and m. Here, consistency
relations with derivatives arise from higher order zeros at the end
points. The symbol Z; means the sum is taken over those j values consis-

tent with the fixed choice of k and m. Note that some of the consistency

conditions may be trivial if some of the derivatives on the 1l.h.s. of Eq.
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2.2-21 also vanish. For each fixed value of m and k (of which there
are an infinite number of possible choices), the total number of con-

sistency relations obtained by using the analytic approach is

N =@ *emax( [m' |, [k'])) + max(0, |k'-m' [-|k-m|) + max(0, [k'+n' [-]kim]).

(2.2-22)
The first term is due to the simple internal zeros, and the second and
the third terms are from the (possibly higherorder) zeros at the end
points x = +1 and x = -1, respectively.

When m = m' and k = k', Na becomes

N, =3' - max(|m'|, [k']), (2.2-23)

there are no nontrivial consistency relations from the zeros at the end
points. For k' > |m'| > 0, using Eq. 2.2-20, the consistency relations

of Eq. 2.2-21 reduce to

1/2 k'+m! -kl
- Co S A ] y 1yt 3 i 2
[.Jz}'(J k! () 1+ x:!', ) 2 (1- x-"k'm')
e D HEEDY 3’k .
Tt TP
x pJf’fk,m » k'4m') (x:;ii-'k'm') <jk'm'|T|j'k'm'> = 0, (2.2-24)

for each k' and m" and for 1 = 1 to j' - k'. Making use of the Gauss-
Jacobi integration of order j' - k' with precision 2(j' - k') -1 and letting
w;'k'm' be the weight of the ith zero, we can reduce Eq. 2.2-24 to the

form (see Appendix B)
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1/2
[3.1 (3 _~k")1(3 _+k")!
<jokvmvl-rlj ®'m's = — 2;'-'-1 ? . o : \
2 a1 )

=213,

[4] (kN1 e |12 {—_‘; 1 - k)
i=

i
x 22k'+1(j_m') ! (j'*m') ! wj 'k'm' jo-k' (xj 'k'm')

« P_:(:k:m Jk'+m )(xj’;'k'm') <jk'm’ llelklml‘>’

' (2.2-25)

For other values of k' and m', similar expression can be obtained using

the symmetry properties of di]c'm' (x).

The factorization matrix elements are given by (31)

R ko k om o, _
A7 G k' |3 k1:1)];](}:01,“0’_,llm [gi_c_ _ o & I:I)]joj ako-k',k-k
x 6 , _ — + CCT. (2.2-26)
m -o',n-m

For values of k and m's leading to a nonzero factorization matrix ele-

ments

km komo* k'm'
1 ¢ (®) $.°° X ¢4 (%)
LE.E e 3o =% .
% .

E' ko mo (j ! I?) ]j j = } dx
= ko= ° -1 km
o3 ") (2.2-27)

Again, the Cauchy principal value integral is used to regularize the in-

tegrand with simple pole singularities, and because of the Kronecker delta
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conditions in Eq. 2.2-26, higher order zeros at x = 1 do not produce
singularities in the' integral of Eq. 2.2-27. Although the integral con-
verges at these points, consistency conditions from these zeros still
exist. Again, it should be remarked that it sometiﬁes happens that the
integrand of Eq. 2.2-27 may be nonsingular at some zero of ¢% ;(x) for
all values of j. In this case, it is of course not necessary (although
not incorrect) to regularize the integral (i.e., regularization has no
effect).

The treatments of the T-matrix factorization in other approximations

and in the two symmetric/spherical tops system can be easily given by

simple extension of our argmnent'. We will not discuss them further.

2.3. Factorization Relations and Consistency Conditions

for Degeneracy Averaged l<MlT|M'>[2

'We now consider the factorization of the quantities |<M[T|M'>|2
where the T operator satisfies Eq. 2.1-1. Hére, M and M' label states
in Hl. (The discussion will also apply for any operator that is local
in H,.)

We assume that each M is decomposed into two sets of discrete
quantum numbers M = Ml’ M2 such that the state vectors lMlM2>, for each
fixed Ml form the basis of a different, single unitary irreducible repre-
sentation of some group. By "single” we mean that the number of possible
values of MZ is the dimension of the repreéentation, which is denoted by

gul, and we shall refer to the set of states with fixed Ml as .a symmmetry
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class. Let Pul be the projection operator for the span of the states

with the quantum number Ml, then its R, R component is defined by
~ * - — ok
Py (RIR) = 2, (R|R) = | ¢,(R) ¢ (R). (2.3-1)
¥ ¥ M,

We define an appropriate averaged quantity rzcullui) by

roghp g} lepglthpg” (2.3-2)
Mé o
and develop factorization relations for this quantity. If the symmetry
classes are also the energy levels, then the averages defined in Eq.
2.3-2 are also the (energy) dengemeracy averages.

For T local in the internal coordinates, the choices of Ml and Mz,
and Pnl, 8“1 and the associated group for some collision systems are given
in Table 2.2 (31). In a collinear atom-oscillator with symmetric poten-
tial, the finite group consisting of the inversion operation and the
identity can be used to define symmetry classes. The corresponding aver-
aged quantities defined by Eq. 2.3-2 are not degeneracy averages. The
factorization relations for these quantities are given in Ref. 31l. Since
they are only of formal interest, we will not discuss them here.

In the atom-diatom rigid rotor system, the full symmetry group of
external rotations R(3) is used to define the symmetry classes. The rigid
rotor wave function {ij(etb)} for each fixed j, provide a basis for a
different irreducible representation of R(3). The quantities ’l‘z(jlj') de-

fined in Eq. 2.3-2 for this system are (energy) degeneracy averages. It



Table 2.2. 7Possible symmetry classes can be defined in some common
systems in which the T-matrix is local in the internal

coordinates.

Here, the notation [j] = 2j+1 is used

System M, M, R (R|B
Fig1d Totor 3 m 0.4 Y
:t;;m—symnetric j_, Ikl sgn k, m aBy a'g'y'

i k m aBy a'Bty!
atom-sph.erical i k, m 08y o

top
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P, (R[R) Degereracy
M1 gHZ Group average
'['z?-?rl Pj(c°s ) il R(3) yes
[3) (2-8 ) .
k[0 d @
8112
(2—6|k‘ ’0) (31 R(3) x D yes
x [cos k(a'+Y")] '
ii% ol 133 R(3) x Gy 20
L
Ll 3 (o 1’ R(4) yes

8
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follows readily from the addition theorem for spherical harmonics that
the projection operator for the symmetry classes are given by

l%rl Pj(cos Y), where Pj(cos Y) is a Legendre polynomial and y is the an-
gle between (@, ¢) and (0,4). Note that, {Pj (cos Y)} is a complete set
on Y.

In the atomsymmetric top system, we can define two different sym—
metry classes. One is to use the full symmetry group of the symmetric
top, namely R(3) x D (i.e., external rotations x internal symmetries).
The top wave functions {([j]/87 )]'/2 Di-'m(g)} where Q = (aBy), for each
fixed j and |k|, provide different irreducible representations of
R(3) x D, (of dimension [j] for |k| = 0 and 2[]] for |k|>0). In this

case,the averaged quantitiesdefined in Eq. 2.3~2 are given by

2 3 LR 4 T K |
GR35 k] = @, 'l ST Zk z |<jka|T]i"k'n">|2,
sgn mm"

1 4

i.e., degeneracy averages. It follows readily from the group closure

property and unitarity of the representation (57)

;Z Diicm(ﬁ) Df:m(ﬂ) = D‘j!k.(ﬂ'), (2.3-4)

-1
where Q' = Q Q represent a rotation through Q followed by one through

9-1, that the projection operators for the symmetry class are given by

(il (2-6|k|,0)

lekl (ﬁlﬂ) = dik(x') cos[k(a' + ¥") 1], (2.3-5)

8nm

setting Q' = (a'B'Y') and x' = cos B'. The set {dgk(x') cos[k.(or."l"Y')]}'
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is complete on functions of R' and a' + y', which are even and periodic
(of period 27) in o' + ¥'.

Another set of symmetry classes are obtained from the smaller sym—
metry group R(3) x C& (where the internal rotations are about the sym-
metry axis). The top wave functions provide different irreducible repre-
sentations for each fixed j and k. The symmetry class projection opera-
tion are given by —[1% D?‘k(ﬂ') with Q' defined as previously. The set
{Dlj(k(SZ')} is complegz on functions of R' and a' + y', which are periodic
(of period 21) in &' + y'. Note that, Tz(jk[j'k'), defined in Eq.

2.3-2 for this system are not degeneracy averaged quantities.

Finally, in the atom-spherical top system, the symmetry classes are
defined here using the full symmetry or noninvariance group for this sys-
tem, namely, R(4) = R(3) x R(3) (external rotations x internal rotations)
(63). The top wave functions (identical to those in the symmetric top),
for each fixed j, provide a different irreducible representation of R(4)

of dimension [j ]2.. The symmetry class projection operators are de-

termined from Eq. 2.3-4 to be (64)
p,@lo = Hdon, | (2.3-6)
8w

where )(3 is the character for the jth irreducible representation of R(3)
and ¢' is the class parameter (angle) associated with Q' = 2 52-1 (64).
The set {xj ()} is complete on the class invariant functions for R(3)

(65), and xj( ) are related to Uz ( ), the even Chebyshev polynomials of

3
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the second kind, by

0o = S -y, ceos 4/2). (2.3-7)

The quantities 'l.’z(j |3'), defined in Eq. 2.3-2 for this system are de-
generacy averages.

In the CS, the rotation group R(3) can be used to define the sym-
metry classes for any system. The r.o.a.m.s. wave functions {1"Ym(e,¢)}
for each fixed %, provide a difference irreducible representation of
R(3). The projection operation for the symmetry classes are given in
terms of the Legendre polynomials % Pl(cos v) (parallel to those in
the atom-rigid rotor system in the ES). Now the averaged quantities de-

fined in Eq. 2.3-2 are

(2[2") = -—17—2 [<aa]z]eta>|2. (2.3-8)
2745

The suppressed internal state and wave number labels are arbitrary, but
fixed. In the factorization relations, the input T-matrix elements are
on-shell if the predicted T-matrix element is on-shell.

We now sketch the proof of those factorization 'relations. In terms

of the projection operators defined in Eq. 2.3-1, Eq. 2.3-2 becomes

'rz(uliui) =L JdR Jdi P, (R|R) P .(R|B) WRW: . (2.3-9)

o w, P g R iR

From Chan et al. (31), if the quantum labels M = Ml’ M2 are appropriate-

1y decomposed and for values of R and R such that Pﬁl(Rli) # 0, the
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completeness type relations

Py (RIR) PH.(RI_) g”i

( )] 1’ (R R)
P (R[B) z L“llul ML, R| (2.3-10)

"

are valid. The validity of the above expansion may be demonstrated

directly from the completeness of {P

!

various systems. Assuming Eq. 2.3-10 to hold and substituting it into

(R[R)} given in Table 2.2 for

Eq. 2.3-9, we obtain the factorization relation (31)
2 "o T = 2 -
T (M, [ M) % (e M) ]MlL (L, [4)). (2.3-11)
1 1

M1M]
If we define a new operator Fﬁl 1 which has the l.h.s. of Eq. 2.3-10 as

its R,R component, i.e.,

. 2, (R|R) P, (R|R)
M M
1&p = 1 fl , (2.3-12)
ﬁl = (R[B)
Y

then the factorization matrix elements [G(Ml[M )]MlL are given explicit-
1y by (31)

ey %) ]ﬁ1L1 - gﬁl Tr(;flnl L) (2.3-13)

By B TR

with Tr( ) denotes a trace. Typically, the trace in Eq. 2.3-13 involves
an integral of some integrand which has singular points. There is then

some flexibility in [G(M) lﬁl) ]M1L the values of the matrix element de-
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pend on how the integrand is regularized. Any flexibility in the fac-
torization relations corresponds to consistency conditions (as seen in
the T-matrix factorization). More specifically, substituting Eq. 2.3~
13 into Eq. 2.3-11, we obtain
T (Mllul) -i Tr [E; MlMl ] e Ta >3- (2.3-14)
Ml £ L 1

l lng 1

It is clear that if the r.h.s. is to be independent of the choice of
regularization, we must have the consistency conditions

1
) —gL R [R) T, [E) = o, (2.3-15)
L
where (R I-ﬁ ) corresponds to any of the above mentioned singularities.
For higher order zeros w.r.t. some variable for which P ( 1) is locally
analytic, the corresponding set of consistency conditions involves appro-
priate higher derivatives of PL ( ] ) (cf. previous sections).

1 —
As a consequence of Eq. 2.3-15, we can add to [G(Mi]bil)]

. _ Wi, ®

term of the form (const) x —— P, (R _|R ) (where the constant can depend
ng Ll o' o

on Mi, _ﬁl, Ml, Ro and io’ but not on Ll) and still have Eq. 2.3-11 re-

main invariant. Additive terms corresponding to comsistency conditions

from any higher order zeros involve the appropriate derivatives of

Py, ( | . '.l'his flexibility is formally seen to be consistent with the

fact that Fg (R|R) is uniquely defined by Eq. 2.3-12 except at singu-

lar points.

The scattering cross section is related to the square of the magni-
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tude of the on-shell T matrix, for the transition of interest, by a fac-
tor which depends on the kinetic energy of the relative motion and is
thus determined by Eo and k' (using the notation of Sec. 2.1). In the
restricted ES and I0S, where internal energy degeneracy are assumed (see
Chapter 1), if k', M' +l:_°, Mo is on-shell for some values of M' and
¥, it is also on-shell for all values of M' and Mo for the same fixed
values of k' and lc_o It follows that suitably averaged tramsition cross
sections in the ES and IOS obey the same factorization relatioms as do
the corresponding averaged square magnitudes of local T-matrix elements.
. Hence, factorization relations of Eq. 2.3-11 should apply directly to
degeneracy averaged cross sections when the symmétry classes are also
energy levels. If the energy levels do not correspond to a choice of
symmetry class, the factorization relations of Eq. 2.3-11 can still

be used approximately for degeneracy averaged cross sections. The na-

MM}
ture of the approximation is to ignore off-diagonal elements of F-ﬁl

H
this approximation is frequently used in problems concerning the vibra-
tional degrees of freedom (30,66).

It is worth mentioning that, in the CS, averaged cross sections de-

fined by
o(L2'i'm' > %im) =z o(L'A'j'n" -+ 2jm) (2.3-16)
X'
satisfy similar factorization relations for 'rz(zlz') defined in Eq.
2.3-8. The factorization relations for ¢(2'j'm' + &jm) are exact for

T local in R (see discussion after Eq. 2.3-8). In these relations, the
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internal state labels (j's and m's) are arbitrary, but fixed. The cross
sections o(2'3j'm' > 2jm), are not physical observable quantities. If we
sum over the L's on both sides of Eq. 2.3-16, then the resulting cross
sections, (j'm' - jm), are the total cross sections for rota-
tional transitions. Thus, factorization relations for o(£'j'm' - Ljm)
are still useful in reducing the amount of calculation required to de-
termine total cross sections.

We remark on some general properties of the factorization matrix

g(ui]'}il) which are analogs of Eqs. 2.1-8 to 2.1-10. Specifically (31)

(e M) }“13-‘1: sului, | (2.3-17)
sam) s |M) = gvy[¥)) + cor (2.3-18)

and for Cauchy principal value integral choice of regularization
s, M) = 1. (2.3-19)
Suppose there is a pairing of symmetry class labels Ml > Ml such that

P* (R|R) = P2 (R|R) (2.3-20)
w, RIR = 7y (|
then (31)

e [H) 12 | = o
G, |My ML, B L.M (2.3-21)
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and
Tz(ﬁlln'l) = Z—} -rz(i}'llul). (2.3-22)
1

For the case where the symmetry classes correspond to the eigenspaces
of some self-adjoint operator (e.g., energy or total angular momentum

classes), we have Ml = ;11 so

B 2 (H, Jiy) = = rz(ui[ﬁl). | (2.3-23)
Similarly, in the case of total cross sections, we have

& oM} ~M,) = &, oy, ~ M), (2.3-24)

where the kinetic energy labels do not appear. Then, Eq. 2.3-24 is just
a statement of microscopic reversibility.

Finally, we consider a system of two structured particles denoted
s = 1,2, Suppose that symmetry classes denoted Mi may be chosen for each
particle s = 1,2, and that at least one of these classifications is non-

trivial. It is readily verified that (31)
P, (R|R) = P 1(R.|R.) P (R,|R.) (2.3-25)
u WR B PRy [z,

where R = (Rl, Rz) are the appropriate variables. The existence of fac-
torization relations and consistency conditions now follows the gemeral

discussion and the factorization matrix has the form (31)
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con [H) = con ') @ 2‘“'12 %%, (2.3-26)
where the notation is self-explanatory.

2.4, Applications

In the following sections, the TZ(MllH:'l) or degeneracy averaged cross
section o(M;~ > Hl) (whenever applicable) factorization relations and con-
sistency conditions in the collision systems given in Table 2.2 will be
presented. The symmetry classes for the internal state wave functioms,
the corresponding projection operator PM1(R|-§) and the associated group,
given in Table 2.2, have been previously discussed. Here, we consider
in detail the nature of the zeros of PMl(Rﬁi) and the number of consis-
tency relations in each system. These discussions can be easily gen-

eralized to systems with two structured particles.

2.4.1. Atom-diatom rigid rotor -

The results derived here are equivalent to those obtained by Hoffman
et al. (32) using the matrix approach which is discussed in detail in the
next chapter. The factorization relations and consistency conditions
derived are for the degeneracy averaged cross sections ¢(j' + j).

Here Pj.(ecp]'e' %) = -[21-3- Pj.(cos Y), and Pj,(cos Y) have j' simple
zeros x;., i=1to j', inside the interval (-1, +1). Thus, from Eq.

2.3-15, the consistency conditions are (31)

2 o(3' + 3) Pj(x;'.) =0,i=1¢toj'. (2.4-1)
h |
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These j' relations can be considered as a nomsingular _set of linear equa-
tions for the j' downward tramsitions o(j' + j) between different sym-
metry classeswhere 0 < j < j'. These can be solved by multiplying Eq.
2.4-1 by wg'. Pjo(x;‘,), where jo < j' and wé’.is the weight of the ith
zero for the Gauss-Legendre integration of order j', and then by summing

over i (using the fact that Gauss-Legendre integration has precision
2j' - 1) to obtain (31)
3,1 i ;
cv s i i . . .
o(i"3) = -—5— Yoo, B (x0) PoCxi)] 039D, 3 <3
=273, T 33,737 173

(2.4-2)

This is precisely the form of the consistency condition obtained by Hoff-
man et al. (32) using algebraic techniques.

The factorization matrix elements are given by (31)

(x) P:i 1 (%) Pj (%)

P
e(i' N1 5] fldx lo + 2.4-3
where the CCT term is obtained from Eq. 2.4-1. The matrix approach of

Hoffman et al. (32) yields just one of the equivalent sets described by

Eq. 2.4-3. We return to this in the next chapter.

2.4.2. Atom-symmetric top

We first consider the factorization of the degeneracy averaged cross
sections 0(j'|k'| + j|k|) defined by formula analogous to Eq. 2.3-2.
Consistency conditions on 0(j'|k"| >j|k|) arise from the nodes of the

function djk:k.cx' ) cos (k'(a' +Y')) (Eq. 2.3-5), where x' = cos B'.
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The cosine has '2 Ik'] zeros of which |k'| produce independent consistency
relations; le;:k.(x') has j'-lk'l simple zeros in -1 < x' < 41 and a zero
of order |k'| in x' at x' = -1 all of which produce consistency condi-
tions. Note that the (possibly) higher order zero of di:k,(x') at x' =
-1 does not produce a singularity in the Tr(la-zlul P ) integral of Eq.
2.3-13 since the one dimensional integral over o' + 7Y' vanishes in

those cases where such a singularity would occur (cf. Appendix A of

Ref. 31). |

i . i j' t
Let xj. lk'l be a zero of order n~ of dk'k'(x ). The corresponding

consistency conditions are (31)

A
. d j
Z o(3'|k'| > ilk]) &g & D 1 =0, (2.4-4)
i=|k*] dx' %k 51
for 0 < j 5ni - 1, for each i and |k|.
The consistency conditions corresponding to zeros in the a' + y' vari-

able are derived from the equations (31)
j% o' |ie'] > 31> & L(x") cos (k 6], =0, (2.4-5)

¢:|lk'|= _l—l"ﬂﬂllc{.z) »i=1to |k'].

We can reduce these conditions to expressions involving constant coeffi-

clents (31). Let {Fi(x')} be a complete set of functions in the x' vari-
able (e.g., Fy(x') = Pi(x'), the Legendre polynomials). Expand d.'l k(x’)

in terms of {Fz(x')}
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(P Jk '
di =D = .z_ aI F(x"), (2. 4~6)

L

where the coefficients are wniquely determined. Substituting Eq. 2.4-6
into Eq. 2.4-5, the consistency conditions reduce to
Z jk i 1] T 4_
a_ cos (kdy,,)o(i'|k'|+jlk]) =0, (2.4-7)
3fe] ¥ I’

i=1to lk'l and for all £,

which is in the required form. Different choices of functions F’I of

course lead to equivalent sets of consistency conditions.
The factorization matrix elements are given by (31)
)
(2 |k°|,0) 5,1
k|, 3lel ~ 4T

ey ler 131k, D1y

o

3 j'* 3

w1 5%k O G @ & @ on s (k @) cos (k'$) cos (kd)
x f dx —>2 f do 0

1

d%i'( x) 0 cos (k¢)

+ CCT, (2.4-8)

where the CCT terms are obtained from the consistency conditions of Egs.

2.4-4 and 2.4-5.

Next, we consider the factorization of '1:2(3 k|3'k") which are mot
degeneracy averaged quantities. The cohsistency conditions here arise

3 o' L
from the nodes in the B' variable in Di . dﬂ L (eos B") LIK(' YY)

hence, have the same form as Eq. 2.4-4. Note that those of Eq. 2.4-5
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do not occur. Thus, for a given value of k, the total number of con-

sistency relations obtained by using the amalytic approach is
N, = (3" - [k']) + max(0, [k'| - [k]), (2.4-9)

where the first term is from the simple internal zeros and the second
term is from the higher order zeros at x = -1.

When k = |k'|, N_=3'- lk'l, there are no nontrivial consistency
relations from the zeros at x = ~1. In this case, for k' >0, using Eq.
2.2-20, the consistency conditions at Eq. 2.4-4 reduce to

1/2 i k' (0,2")

jok' | 22k'HL (4 x500) Py "‘§ ) QKRN =0,

i=1to j' -k', (2.4~10)

i th (0,2k") J
where LA is the i~ zero of Pj-k' (x) or dkk(x)' Msking use of the

Gauss-Jacobi integration (see Appendix B) of order j' - k' with preci-
sion 2(j' - k') - 1 and let w;',k, be the weight of the ith zero, we can
reduce Eq. 2.4-10 to the form

: 31 1/2 1/2
G K |3 = - |2 Z L
0 | gy | A

l_kl
i (0,2k') .1 (0,2k*) 1 TR
x §:1 e B G B G 3k |3k,

- (2.4-11)
for k' s_jo < j°'.
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For k' < 0, similar expression can be obtained using the symmetry proper-
ties of dik(x).

The factorization matrix elements are given by (31)

o, @ & 0@ & @

_(®
k

[6(i'k' |7 B 5ol )Fc]l-x
6(i'k' |3 =—
- Kook 2

[« N
=] )

(2.4-12)

and the CCT term is obtained from the comsistency conditions of Eq.
2.4~4. The ground state factorizationshave been considered by DePristo

et al. (30).

2.4.3. Atom-spherical top

Consistency conditions on the degeneracy averaged cross sections
6(j' = j) arise from the simple internal zeros of Uzj.(cos $/2) (see
Egs. 2.3-6and 2.3~7). If we denote the positive zeros of Uzj,(x) by

x;'j.’ i=1to j', then we have (31)

£ 09U > 9) Y Uyy(agy) = 0, i = Lto 3. (2.4-13)

The j' consistency relations of Eq. 2.4~13 can be considered as a non-
singular set of linear equations for the j' downward tramsitions o(j' - j)

between different symmetry classes where 0 < j < j'. These can be solved

i i . i .
by multiplying Eq. 2.4-13 by WZj'UZjo(XZj')’ where ig < j' and Wit is
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the weight of the :i.th positive zero for the Gauss-Chebyshev integration
of order 2j', and then by summing over i (using the fact that Gauss—

Chebyshev integration has precision 4j'-1l) to obtain (31)

|:jo:l 1 . i
o(3 o = — j=§'—j Gi [; w2j' (x2 ") U, (x2j')]
o

x o(3' * 3),
(2.4-14)

for jo <j’'.

The factorization matrix elements can be evaluated in terms of the

Hurwitz integral (64) (invariant integral in group space) for R(3) (31)

v 3 .1
— [33103 3 ™ o ?
3N, . = Q -]—'][ ap X~ (¢) Xi(d?) ($) (1 - cos ¢) + CCT

(1 - x7) +CCT.

al

G113, 2{» Y21,
"G L, ®

Uz'j-( X)

- (2.4-15)
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3. MATRIX APPROACH TO FACTORIZATION

In the last chapter, using amalytic techniques, we derived the
general state factorization relations for the matrix elements <Mlwlmr>,
with W being a local operator, and for the appropriately averaged
|<M|W|M'>|2. In particular, known ground state factorization relatioms
were recovered (30-31) which we now will use in a different approach
to factorization. These factorization relations for scattering in-
formation (T-matrix elements, cross sections and thermal rates).

written in matrix notation, are given by
s(') = M(M') °s(0), (3.1

vhere the M component of S(M'), [_S_(M')]M is the scattering informa-

tion for the tramsition M' to M, and the matrix elements [M(M')] d

My =
equal to [A(M' IO) ]M M ([g(n' IO) ]M M) in the T-matrix (cross section/
thermal rate) facto:ization. The :elation of Eq. 3.1 for each M' is
unique since there are no consistency conditions for the ground state
and, hence, no CCT term in Egs. 2.1-7 and 2.3-13.

In the ES atom-diatom, rigid rotor, degemeracy averaged cross sec-~
"tion factorization, M' in Eq. 3.1 is the rotor state label j. Hoffman
et al. (32) have derived the general state factorization relations and
consistency conditions starting from Eq. 3.1. The matrix M(j') has a
peculiar structure which is determined by the triangular inequality for

3-j symbols. Equation 3.1 can be inverted for S(0) by using algebraic

techniques. From this, the general state factorization relations and
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consistency conditions are derived. This "matrix" approach can be
generalized for those systems discussed in the last chapter. Chan et
al. (31) have pointed out that the most natural general state fac-
torization relations obtained by the matrix approach are just one of
the equivalent set obtained by the analytic techniques (the members of
which differ by the CCT term in Eq. 2.4~-3, for example). However,

the two approaches do not always give the same number of consistency
relations as will be discussed. In some systems, the matrix approach
- gives more relations than the analytic approach.

The strategy for successful implementation of the matrix approach
depends mainly on the structure of the factorization matrices M(M')
which are determined by coupling integrals in Egs. 2.1-7 and 2.3-13
with M= 0. In turn, these integrals depend on the nature of the wave
functions or projection operators of the symmetry classes. We now dis-
cuss different types of typical ground state factorization matrix struc-
tures and the corresponding algebraic techniques needed in deriving the

general factorization relatioms.

3.1. Type A Matrix Structure

In this section, we consider the structure of the ground state
factorization matrices M(m') which arise from ¢_,(R) (Pm' (Rli)) where
m' is a single quantum number label and also gives the number of in-
ternal simple zeros of ¢m' (R) (Pm' (Rl-ﬁ)) . Systems fitting into this
category, and the corresponding ¢m‘ (R) (Pm' (Rl_ﬁ)) , are listed in Table

3.1. In the collinear atom-infinite square well oscillator system, £
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Table 3.1. ES systems and corresponding ¢m(R) or Pml(RI R) that have
Type A matrix structure

ES system ¢m(R) or Pml(Rli)

T-m_atrix factorization

1/2 2
collinear atom-harmonic z)l/z 1 o0 /2 B (/5
oscillator 2% m

m!
collinear atom-infinite : 1/ 2 TX 1/ 2»’

square well oscillator (2) sin (m+l) ® (2)

x U,
where y = cos %
Degeneracy averaged cross
section factorization
atom-diatom rigid rotor -[;3#- P j(cos Y)
atom-spherical top 2k} Xj(¢) = il U,.(cos $/2)
g2 gne 23

is the well width and m is the vibrational state (m = 0 is the ground
state). The rest of the symbols are defined in the previous chapter.
Note that, except in the atom—spher_:ical top case, the functions
¢m(R)(Pm(R|T{)) are in the form of wllz Pﬁ(X) » Where Pm(x) are ortho-
gonal polynomials of order m and w are the corresponding weights, and,

in particular, Po(x) = 1. Hence, in these systems
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@_(m')]m . J dxw Pm (x) Pt (x) Pm(x)’ (3.1-1)
o

o

where ¢ is a constant.
To evaluate Eq. 3.1—1, the natural way is to use addition theorem
to combine any two polynomials
n'+m
Pa® P @ =2 _ a P (. (3.1-2)
k= |m’-m|
Using the orthogonal property of {Pk}’ m has to be in the range of k
for nonvanishing matrix elements @(m')]mom; the matrix elements are
then proportional to am, Hence, for nonvanishing @(m')]mom, mo,»m'
and m must obey the triangular imequality, i.e., lie in a rectangular
region bounded by the counter diagonal comnecting the elements m, = 0,
mn=m' and n = m', m = 0 and the diagonals (parallel to the main di-
agonal) satisfying the relations m = m*m' (so the boundary of the rec-
tangle is given by m_ = lmim'»l). Furthermore, since Py (x) has a non-
zero term proportional to xR', when k = m' + m in Eq. 3.1-2 we must have

that a_. # 0 so

M@ o F O (3.1-3)

Similarly, combining Pm and Pm shows that
o

-m,m

and combining Pm and Pm' shows that
)

M(m') ]

22 m_mv ,m # 0 (301‘5)
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(both Eqs. 3.1-4 and 3.1-5 also follow from the observation that in

Eq. 3.1-2 3| ' - # 0). Thus, from Eqs. 3.1-3 to 3.1-5 matrix elements
of the boundary of the rectangular region are nonzero (but those inside
still can be). In fact, in all systems listed in Table 3.1, except the '
atom-spherical top, all elements in this region are zero except those
which lie on diagonals satisfying L + i, where i is even (o@d) if
m' is even (odd), because if L + m' + m is odd, then the integrand

of the integral im Eq. 3.1-1 is odd.

In the case of atomspherical top system, Pm(Rli)' are in the form
sz(x), but Eq. 3.1-1 is still valid since the required weight w is
provided by the weight function (invariant density in group space) of
the Hurwitz integral (64) (see Eq. 2.4-15). Using the previous analy-
sis, it can be shown that nonvanishing [__lg(ln')],%m lie in the rectangular
region defined above and elements of ‘the boundary of the region are non-
zero. Also, all elements in this region are nonzero because only even
Chebyshey polynomials of the second kind are involved in Eq. 3.1-1.

Diagramatically, the structure of M(m') is
0

(3.1-6)
Mm') =

vhere the rectangular region has nonzero matrix elements on the boundary

(as well as some inside) and regions with all vanishing elements are
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labeled by 0. From now on, the matrix structure of Eq. 3.1-6 is re-
ferred to as Type A structure. As has been shown by Hoffman et al.

(32), it is convenient to decompose M in the following mamner.

RS

M(m') =

11}
-4
Con
s-
A
-

(3.1-7)

where A(m') is a m' x « matrix consisting of the first m' rows of M(m')
(i.e., rows 0 to m'-i), and B(M') is an « x « matrix consisting of the
remaining rows of M(m') (i.e., rows m' to ). The matrix B(m') is upper
triangulaf. if gN(m') is the finite rank approximation to B(m') consist-
ing of the first N rows and columns, then gu(m') 'is upper triangular
with nonzero diagonal elements. Hence, it is nonsingular. The limit

as N+ of gN-l(m') exists componentwise and is denoted by _B_:l(m').

The matrix B=-1(m') is also upper triangular. Let blk be the matrix

elements of B(m') and let b!,kl be the elements of g-l(m'). It can be

easily shown that, b}Z,k 1 is given by

-1_ 1
b = ———
22 %
k-1
-1 1 -1
b =-—=—) bgi = by - (3.1-8)
2k boy = k

This makes generating g-l(m') particularly easy since previoﬁsly de-

termined matrix elements of -EN 1 do not change as N increases.
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In order to invert Eq. 3.1, it is convenient to decompose the com-
ponents of S(m') in a manner similar to the decomposition of M(m') in

Eq. 3.1-7, namely,

§(-) (m' )
§E+) (m")

s(m") = . (3.1-9)

Here _§_(~) (m')(§(+) (m' )) contains the downward m<m' (elastic and upward

m > m') transitions in S(m'). With this definition, Eq. 3.1-1 becomes

s @ A(m')

S(m') = +5(0). (3.1-10)

i("‘) (m') g(mv)

The operator B(m'), which may be regarded here as acting on a Banach

space 2,1 of vectors S of finite norm, given by

IEH1=F%I- (3.1-11)

If S, are physical cross sections then [|s}]; = g S; since S, > 0. 1In
fact, B(m') is compaét and upper triamngular but is not invertible since
it can be proved that zero is in the spectrum of B(m') (67). However,
from the upper triangular structure of B(m'), the zero corresponds to
unnormalized eigenvectors which are not in the space and thus there
exists a unique wnbounded semi-inverse for this operator defined on its
range. This semi-inverse is just g-l(m').

Since, by construction, _§(+) (m') is in the range of B(m'), we have

from Eq. 3.1-10 that
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50 =3 @) - sP @ . (3.1-12)

Thus, S(0) is determined by _S_(+)(m') and, since S(0) in turn determines
S(m'), it follows that §(_) (n') must be determined by _s_(+) (m'). These

are jusé the consistency conditions discussed by Hoffman et al. (32)
sOa@) = a@y - 5@y - sP@n. (3.1-13)

From the way in which _S_(_) (m') was constructed, we can easily see that
there are m' such relationms.
To establish a factorization relation for amn arbitrary input state,

one just substitutes Eq. 3.1-12 into Eq. 3.1 to yield (32)

s(@) = ¥@") @ s @, (3.1-14)

#

where S (;) has one component for each tramsition m > m for which m >

It is important to note that the elements of the factorization ma-
trix M(m') g_l(ﬁ) (though complicated) can each be exactly calculated
by a finite sum of the product of elements of M(m') and the upper tri-
angular _E_—l(;). However, except for the case m = 0, each component in
S(m') is given in terms of an infinite number of componernts of _S_(+) (.
Of course, for physical scattering information, only a finite number of
components which are energetically accessible are nonzero. As a practical
matter many of the energetically allowed pieces of scattering informa-

tion often are not large enough to be of importance in the factorization

relations.
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The consistency conditions of Eq. 3.1-13 are in the form of ex-
pressions for the scattering information for downward tramsitions out
of the m' state in terms of those of upward transitions. As indicated
in Eq. 3.1-13, the numbers of consistency relations s;tisfied by a given
input state is equal to the number of singularities associated with its
wave function (projection operator). Hence, both the analytic and ma-
trix approach give the same number of consistency relations since all
zeros are simple for these problems. For the systems listed in Table
3.1, the consistency conditions resulting from the analytic approach
can be converted easily into the form given in Eq. 3.1-13. This is
achieved by using Gauss integration for the corresponding orthogonal
polynomial (see Chapter 2). Finally, we remark that the consistency
conditions are implicit in the general state factorization relations of
Eq. 3.1-14 (setting m = m' in Eq. 3.1-14, the consistency conditions of
Eq. 3.1-13 are immediately recovered).

We now consider some sample calculations. Atom-diatom rigid rotor
cross section factorization will be used as illustration. First, we
calculate the factorization on matx.;ix g_(j' IE) for j' =1, j = 2 in the
analytic approach. The matrix relates cross sections out of E = 2 (in-
put) state to those out of j' = 1 (predicted) stated. If we drop the
CCT term in Eq. 2.4-3, them [G(1]2) ]joj is given by

, P, (x) P.(®) P.(x)
5,1 1 3, 3 1 o1 x
[2(1[2)]:]0__] = £:dx 7, [5‘013]( dxMZ R

0 x-3

(3.1-15)
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where Pj(x) is the jth‘Legendre polynomial and Q(x) = xPjo(x) Pj(x).
The integral is clearly zero if the integer jo + j is even since then

the integral is odd. Equation 3.1-15 can be rewritten in the form

of [+ fl" i
el 4 = 13,15 J & AR 200D 4 o5 2 g|,
o ——
3

0 X -
(3.1-16)
where
2 [ g4 V3 +1
F=-—][ —ﬁ=l — . , (3.1-17)
/3% x-3 2 -1

The matrix elements can be evaluated analytically, and the first 6 x 6

diagonal block of G(1}2) is

3
0 1 3 4 5
0.6667 0.1111 -0.4222
0 -0.1925F +0.1283F +0.0321F
(=0.4132) (=0.2801) (=-0.3800)
2 -0.5556
-0.5774F 0 0 +0.2245F 0
(=1.2397) (=-0.2599)
0 1.6667 0 0 0
0.7778 0.8642
+0.8981F 0 0 -0.3493F 0
(=1.9605) (=0.4042)
-1.6667 1.1111 1.4778
0 +0.6736F =0.4491F 0 -0.1123F
-4.6444 1.8062
+0.3528F 0 0 -0.1372F 0
(==~4.1798) (=1.6255)
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Here, the column and row labels j and jo’ respectively, are given for
easy reference. Note that Eq. 2.3-17 for [g(llZ.) ] n2 and Eq. 2.3-21 for
[g(lIZ)]Zm are satisfied (no F term appears for m = 1 since the inte-
gral of Eq. 3.1-15 is regular in these cases).

In the matrix approach, the corresponding matrix is

i

0 1 2 3 4 5
0 0 0 0 0.5556 0 -0.3111
1 0 0 1 0 . | 0.2222 0
2 0 0 0 1.1111 0 0.2778

k| o . (3.1-19)

3 0 0 0 0 1.1667 0
4 0 0 0 0 0 1.2000
5 0 0 0 0 0 0

The first two colums of zeros reflect the fact that only upward transi-
tions are ﬁsed as iﬁput data in the matrix approach. ﬂere, the part to
the right of the dash line is the [__1‘_1.(1) 02—1(2)] matrix. Although it
is not that obvious, the factorization matrix G(1{2) in the amalytic
approach (3.1-18) can be converted into the form in the matrix approach
(3.1-19) by using a CCT derived from the two comsistency relations sat-
isfied by the transitions out of 3- = 2 state.

To predict cross section for the transition j' -+ j' + Aj using

cross section out of 3' state, in general, all transitions 3> j, such
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that Aj + 3 + j is even are needed in the analytic approach (for even
integrand in Eq. 2.4-3), but only the subset of these for which j >3 +
Aj are needed in the matrix approach.

The results of using factorization relations to predict cross sec-
tions and thermal rates for j' = 1 > i, transitions using j = 2 tramsi-
tions as input data are presented in Tables 3.2 and 3.3, respectively.
Close coupling (CC) results are used as inmput data. Table 3.2 contains
cross sections for the HCl~He system at a total energy of 772 cm-l. The
CC results are taken from Chapman and Green (68). In the second columm,
predictions from the matrix approach using upward transitions from the
-j_ = 2 state as input are shown. The 2 + 0 and 2 + 1 cross sections are
obtained from the consistency relations of Eq. 3.1-13. It is not very
surprising that the CC j = 2 input data does not satisfy the consistency
conditions. The matrix approach results are taken fron Hoffman et al.
(32). The analytic approach predictions using the Cauchy principal
value integral regularization (Eq. 3.1-16) are given in the third columm.
All transitions from the j = 2 state are used as input. Setting F =0
in f.q. 3.1-16 (corresponding to absorbing the contributions from the
singular integral Eq. 3.1-17 into the arbitrary constants of the CCT
term in Eq. 2.4-3) results in a different factorization relation in the
analytic approach since the input data does not satisfy the consistency
conditions (31l). The resulting factorization relation is just a particu-

lar case considered by Chang et .al. (69) and the results of using this

factorization relation are presented in the last column of the table.
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Table 3.2. Comparison of close coupling calculated cross sections
(3%) for the j' =1 » jo transitions in HCl-He at a total
energy of 772 cm l, and predicted cross sections using
3 = 2 transitions as input data in the matrix and ama-
lytic approach

, - a Matrix Analytic Analytlc
i jo cc a.pproachb approach® approach
2 0 0.4748 0.3686 input input
2 1 3.9340 3.7970 input input
2 3 5.6717 input input input
2 4 0.9510 input input input
2 5 0.0953 input input input
2 6 0.0054 input input input
2 7 0.0001 input input input
1 2 6.5567 6.3282 6.5567 6.5567
1 3 1.2934 1.1112 1.3193 1.1938
1 4 0.1613 0.1144 0.0076 -0.1140
1 5 0.0131 0.0066 -0.4371 -0.4865
1 6 0.0006 0.0001 | -0.2850 -0.1846

®Ref. 68.
bRef. 32.

cResults from using Cauchy principal value integral regularization
(qu 3- 1-16) .

dResults from using Eq. 3.1-16 with F = O.
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Table 3.3. Comparison of close coupling calculated thermal rates (in
units of 10~10 w3 s~1) for the j' = 1+ jo transitions
in CO-H at 100°K, and predicted thermal rates using j = 2
transitions as input data in the matrix and amnalytic

approach
Matrix Analytic Analytic

i’ jo cc? approachb approach® approachd
2 0 0.5014 0.4675 input ini:ut
2 1 0.8374 0.8176 input input
2 3 1.2186 input input input
2 4 1.2103 input input input
2 5 0.0509 input input input
2 6 0.0142 input input input
2 7 0.0060 input input input
1 2 1.3957 1.3626 1.3957 1.3957
1 3 1.4550 1. 4165 1.4829 1.4428
1 4 0.0701 0.0631 0.0476 0.0300
15 0.0197 0.0174 ~0.1243 ~0.1400
1 6 0.0102 0.0074 -0.0339 -0.0193

3Ref. 70.

PRet. 32.

“Results from using Cauchy principal value integral regulai‘ization
(Eq- 30 1"16)0

dR:esult:s from using Eq. 3.1-16 with F = 0.
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For cross section 1 + 2, both analytic approach predictions agree
with the CC results. This is just a consequence of microscopic re-
versibility (see previous discussion and Eq. 2.3-24). It is mot very
surprising that the matrix approach does not presexve microscopic re-
versibility in here because cross section 2-+1 is not used as input
data. PFor cross section 1 > 3, both analytic approach predictions are
better than the matrix approach predictions. For cross sections 1 -+ 4,
5, 6, the analytic approach predictions are umrealistic; negative values
of cross sections are predicted. The matrix approach is far better in
these cases. Table 3.3 contains thermal rates for the CO-H systm at
100°K. The CC results are taken from Green et al. (70) and the matrix
approach preditions are again taken from Hoffman et a1 (32). The re--
sults are qualitatively similar to those discussed above.

From the results of Tables 3.2 and 3.3, we can conclude that, in
general, the matrix approach works better than the amalytic approach.
This is due mainly to the difference in structure of the factorization
matrices. In the matrix approach, to predict tramsition j' + j' + Aj
using transitions j - j, only tramnsitions with j > Aj are required, but
in the analytic approach transitions with j < Aj are also required (see
previous discussion). Note that, because of the tendency of the upward
transitions out of a given state to diminish with increasing Aj, the
principal contribution in predicting j' + j' + Aj, for Aj > O comes
from the tramsition j + j + Aj in the matrix approach. The tramnsition
-j--*E + Aj is roughly about the same size as j' + j' + Aj. This makes

the matrix approach predictions more stable.
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In the factorization relations of Eq. 3.1-14, consistency conditions
satisfied by _S_(;) are implicitly used so that only the upward trahsitions
§_(+) (m) are used as input data. This is not the only possible form of
the factorization in the matrix approach. In general, we could rearrange
the component(s) of S(m') in Eq. 3.1 such that, for any n satisfying
0<n<n', thé positions of [_S_(m')]n and E(m')]m'-%n in S(m') are
switched. The new M(m') which is compatible to the resulting S(m') still
has Type A matrix structure. Identical procedures can be used to develop
the general state factorization relations and consistency conditioms.

The only difference is that now §_(-) (m') and _S_(+) (n") M consist
of pure downward and upward transitions, respectively. These new fac—

torization relations and consistency conditions are completely equiva-

lent to those derived before. But when input data other than ES de-
rived is used, the new factorization relations result in different pre-
dictions. This flexibility may be useful in improving prediction via-

factorization relations.

3.2. Type B Matrix Structure

In this section, we consider the structure of the ground state
factorization matrices M(M') which arise in the ES atom~diatom rigid
rotor, atom~symmetric/spherical top T-matrix factorizations and in the
atom-symmetric top cross section (not energy degeneracy averaged) fac-—

torization. For the atom-symmetric/spherical top T-matrix factoriza-

tion, we have (30)
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MG 'k'm')] = (-)k°+m° ([3 ][j'][:ll);5
=4J ik m,ikm do
i3 i'\[3i 3 .
x ° ° . (3.2-1)
k-kck' m-mom'

When k' = ko = k = 0, Eq. 3.2-1 reduces to the expression for the
ground state factorization matrix elements in the atom-diatom rigid

rotor T-matrix factorization (30). In the atom-symmetric top cross

section factorization, we have (30-31)

o ' 3,3 R
M(3'k")]. = [3 . 3.2-2
CSI PR S N (3.2-2)
o
In all these three systems, M(M') has the same matrix structure and so,
without loss of generality, we can restrict consideration to the struc-
ture of M(j'k'm') in the atom-symmetric/spherical top T-matrix factori-
zation. The discussion can be easily adapted to the other two systems.

Not all the k and m are independent in Eq. 3.2-1. For nonvanish-

ing 3-j symbols in Eq. 3.2-1, we must have (33)
k-k +k'"=m-m +m' =0 (3.2-3)
o o
(which is just a particular case of the condition in Eq. 2.2-13) and

j zmax ([k], |=}), 3, 2 max (| ], |n ),

(3.2-4)
j' 2 max (Ik'l, lm'l)
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i.e., the absolute value of the magnetic quantum number cannot be
greater than the rotor state quantum number (for more complete dis-

cussion on the properties of the 3~j symbols, see Chapter 5). Equa-

tion 3.1 reduces to

S(i'k'm' |Ak Am) = M('k'm' |Ak Am) + S(000|Ak Am) (3.2-5)
where
Mk=k=%k -k
(o]
(3.2-6)
m=m=m - m'

and

[SG'k'm" |Ak Am)]j = [_S_(j'k'm')]j

k'+Ak m'+Am (3.2-7)
(o] (o]

is the T-matrix element for the transition j'k'm' jo k'+Ak m'+Am, and

e e R A ER [F R T D
. . ,

i i j' i 3 i’
° ° (3.2-8)
Ak -Ak-k' k! Am -Am-m' m'

]

In Eq. 3.2-5, S( ! ) is a vector consisting of only physical transi-
tions (i.e., condition of Eq. 3.2-4) must be met).

Next, we study the structure of the matrix M(j'k'm'|Ak Am). From
the properties of the 3-j symbols, j', jo and j obey the triangular

inequality. Just using this condition, M(j'k'm' IAk Am) has Type A
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structure if all values of j were allowed (with m' in the 1l.h.s. of

Eq. 3.1-6 replacing by j'). However, fromthe conditions of Eq. 3.2-4,

the column index of l='.l(j'k'm'|Ak Am) starts from
j =c=max (|2, |Am|) (3.2-9)
and the row index starts from

j_=r=max (|k'+k|, |n'+im]). (3.2-10)

(o]

Diagramatically, the structure of M(j'k'm'|Ak Am) is

J
T ]
_¢ i'er i'4r
0
'S
J =c 0
j'+e
M(i'k'n' |k Am) = 3 (3.2-11)
0
|

where the row and column index, jo and j, of some points on the edges
are given. Nonzero matrix elements only occur inside the polygonal re-
gion and regions with all vanishing elements are labeled by 0. The

diagonals (parallel to the main diagonal) satisfy the relations jo =
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j £ j'. There may be some zero elements inside the polygonal region,

but elements on the diagonal, satisfying the relation jo =3+ ', are

nonzero. Elements on this diagonal can be evaluated using the relatiom
(57)

i3 35 33%3, 3173, *+ mytm,

, - (D
h ™™ 12
(23 1) 1(23 2) 1(j 1+j 2"“1"'“‘2) '3 1+j 2-m1-m2) ! \

(@725, 1 G4 TG =) TG ,7,) TG,y )

(3.2-12)

X

which is nonzero for jl > Imll and ;j2 P Imzl. The matrix structure
of Eq. 3.2-11 is referred to as Type B structure. (The Type A struc-
ture is, of course, a vefy important special case.)

To invert Eq. 3.2-5, we use the same techniques as for Type A

matrix structure. The matrix g(j'k'm' lA‘k Am) -is decomposed into the

form

/

A(3'k'n' Ak Am)

M(3'k'n' |8k Am) =

B(j'k'm' [Ak Am)

(3.2-13)
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where A(j'k'm'[Ak Am) is a (§' + ¢ - r)x ® matrix consisting of the
first (3' + ¢ - r) rows of M(j'k'm’'|Ak Am) and B(j'k'm'|Ak Am) is an
® x ® matrix consisting of the remaining rows of M(j'k'm' |Ak Am). The
matrix B(j'k'm'|Ak Am) is upper triangular and nonsingular so the in-
verse g—l(j'k'm' lAk Am) exists. When r and ¢ are such that the
counter diagonal at the top left cormer of the matrix structure in
Eq. 3.2-13 vanishes, the inverting procedure described above is still
applicable. It should ﬁow be clear how consistency conditions and
factorization relations analogous to Eqs. 3.1-13 and 3.1-14 can be
easily written down.

We now examine the number of consistency conglitions, Nm, obtained
in the matrix approach. From the way which A(j'k'm' |Ak Am) was con-
structed, we can easily see that Nm =j'+¢c-r. The number of con-
sistency conditions rgsulting from the matrix and amalytic approach,
N and N_, satisfied by S( | ) (defined in Eq. 3.2-7) in the ES sys-
tems mentioned at the beginning of this section are presented in Table
3.4. 1In general, we have that Nm 2 Na’ which is clearly necessary
since the matrix technique generates all consistency conditions. The
reason why the two approaches do not agree in the number of consis-
tency conditions is not clear.

Under certain conditions, Nm = Na. This occurs, for example,
in the atom-diatom rigid rotor T-matrix factorization, when both m' and
Am are positive, in the atom-symmetric top nonenergy degeneracy cross

section factorization, when both k' and Ak are positive, and when Ak =



Table 3.4. Numbers of consistency relations resulted in the matrix
(N,) and analytic (N,) approach satisfied by S( l ) in

different ES systems

ES system | SC 1)

c
T-matrix factorization
Atom~diatom rigid c1 e
rotor SG 'n' [Am) | Am]
Atom~symmetric/ S(3'k'n’ |8 Am) max([Akl , s

spherical top

Nonenergy degeneracy
cross section fac-
torization

Atom-symmetric top s@G'k! | Ak)

||
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r
Nm=j'+c-r

lm'+Am %
| i' + |tm| - |m"+Am|

max(|k'+ 5
([k'+ak|, [m'+am|)  §' + max(|Ak|, |Am|) - max(|k'+Ak|, |m'+Am]|)

| k" +AK j
| 3"+ |8k] - kK]
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Table 3.4. continued

N
a
G' - |n']) + 2max(0, |m'| - |m'+Am|)
G' - max(|k*|, [n'])) + max(0, [k'-m'| - |k+Ak-m-Am|)

+ max(0, |k'+m'| - |k'+Ak+mtAm|)

G' - [K']) + max(0, [k'] - |k+Ak])
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Am = 0 in Table 3.4. We have already discussed the latter in Chapter
2. 1In this case, there are no nontrivial conditions from the higher
order zeros at the end points in the analytic approach. Also, in this
case, the analytic approach consistency conditions can be converted
easily into the form given in the matrix approach by using a suitable
form of Gauss integration (see Chapter 2).

We now give a numerical example, for the atom-diatom rigid rotor
T-matrix factorization in which the two approaches do not give the same
number of consistency conditions. Let j' =2, m' = -1 and m= 2.
From Table 3.4, we have N =3 and N = 1. Remember [S(G'm’ lAwm)]j.:>

(the jo component of S(j'm' IAm)) is the T-matrix element for the

transition j'm' > 3, m'+An. The three consistency relations in the

matrix approach are

[sC2, -1|21, 2.225x [S(2, -1|2)]5 - 1.627 x [S(2, -1|2)]7

4.115 x [S(2, -1|2)]9 + ...

[s(2, -1|2)]2 2.449 x [s(2, -1|2)]4 - 4.266 x [S(2, -1[2)]6

6.387 x [S(2, -1{2)]5 + ...

[8(2, -1|2)], = - 1.387 x [$(2, -1]|2)]4 - 2.728 x [S(2, -1{2)1,

3.412 x [5(2, -1]2)]g + ... .

(3.2-14)
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Note that, the consistency conditions are in two groups. One group
are satisfied by [S(2, -1]2)]j , with odd jo, and the other for even

o

jo' The single consistency condition in the analytic approach is

- 0.612 x [S(2, -1|2)]; + 0.573 x [S(2, -1]|2)],
- 0.568 x [S(2, -1]|2)]g + 0.566 x [S(2, -1]|2)],

- 0.565 x [8(2, -1[2)]g + ... = 0, (3.2-15)

which is satisfied by [s(2, —1|2)]:.l , with odd jo. It can be easily
o
shown that the two relatioms in Eq. 3.2-14 that conmect [S(2, -1[2)]:j .

o
with odd jo’ imply Eq. 3.2-15.

3.3. Teansor Product Matrix Structure

In this section, we consider the structure of the ground state
factorization matrices M(M') which are in temsor product form g(Mi) (]
g(Mé), where M' = Miui, and each factor has Type A or Type B structures.
This kind of matrix structure arises naturally in the two structural
particles, ES systems (see Eq. 2.2-17) and in the 108 systéms (see
Table 2.1). For simpler notation, we assume g(M;) for s = 1,2, are
in Type A structure. In this case, M; = m; are single quantum number
labels.

If g(m;) are decomposed in the manner given in Eq. 3.1-7, then

Eq. 3.1 can be rewritten in the form
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sV @mp | |a@) @ Awp

s@my) = s P@ny | = |a@) @ 2@y | - sco0, (3.3-1)
sP@an|  |p@l) @ a@)
s @my|  |z@) @ B@y

where _S_(_+) (mimé) contains the elements of §(m]'_mé) corresponding to
transitions for which m, < mi, m, 2 mé, etc.

From Eq. 3.3-1, it is clear that S(00) is determined by ST (min}).
Since S(00) in turn determines §(mimé), it follows that §(__) (mimé),
§(—+) (mimé) and §(+-) (m]'_mé) must all be determined by _S_('H') (m]'_mi). This

is just a generalization of the consistency condition (71):

s @img) = @) B @) @ amy) B @) s @in),
s @) = @@) Bl @) 8D -5 @) (3.3-2)
= Wympy) = Gy s imp e s immy)s .

g -
s @m) = @@ 4@ @y st @y,
where I is an identity matrix. The general state factorization rela-

tion is (71)

sny) = @@ -E1@) 8 ¥@y B G, s @pm,.
| (3.3-3)

Since g(m;) are in Type A structures, consistency conditions resulted
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from the analytic and matrix approach are equivalent. This will not be
true for Type B gﬁmé) structures where consistency conditions and fac-
torization relations analogous to those given in Eqs. 3.3-2 and 3.3-3
can be easily written down. Sample calculations using the factoriza-

tion relations of Eq. 3.3-3 are given in Chapter 4.

3.4. General Properties of the Factorization

Relations and Factorization Matrices

We remark on some general properties of the factorization rela-
tions and factorization matrices resulting from the matrix approach.
These properties are analogous to those in the analytic approach. To
simplify the agreement and notation, we consider exclusively Type A
matrix structure. For Type B and tensor product structures, the treat-
ments are similar.

The factorization relation of Eq. 3.1-14, in terms of §F-)(m') and

§(+) (mV)’ is
sO @) = a@)y 2@ s @ (3.4-1)

sPay =3y 3@ -sP@ . (3.4-2)

It is to be noted that B(0) = 271(0) = I recovering the ground state
factorization relation (E = 0).

It follows directly from
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@a@) -3 @) -sPan

@@ -3ty - @a) -3t@) s @

]

@@) 3@ -sP@ = s @y (3.4-3)

that if the consistency conditions hold for __S_(m'), they then hold
for any S(m') predicted from the factorization relation (31).

Analogous to Eqs. 2.1-8 and 2.3-17, we have

@) B @I - =6, (3.4-4)

Let us define a new matrix F(m' lE) by
Em'[m) = B(a") +B (m) (3.4-5)

i.e., the part of the factorization matrix that predicts upward transi-
tions §_(+) (m') from §(+) (m), then
Fmjm) = I (3.4-6)

and
F@"|m') E@'|m) = E(m"|m). (3.4-7)

Using Eq. 3.4-6, we find that Eq. 3.4~2 is just an identity when m' =

m'
3.5. Other Matrix Structure

So far, we have considered Type A, Type B and tensor product forms

of matrix structures for g(n'). There are other matrix structures, for
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example, in the atom-diatom rigid rotor ES T-matrix factorization where
real spherical harmonics (72) are chosen as internal wave functions (31)
and in the atom-symmetric top ES degeneracy averaged cross section fac-
torization. In these two cases, the M(M') matrix structure is more
complicated. The row and column index, instead of bearing a single
label as in Type A and B, now has a double label consisting of rotor
state and magnetic quantum number. If we arrange the components of
S(M') and S(0) in block form where each block comsists of all rotor (j)
states with the same magnetic quantum number, then the corresponding
g(n’) (in block form) has Type A structure and each block is an infinite
dimensional matrix of Type B structure. It is clear that the tech-
niques discussed in earlier sections can be used to invert the ground
state factorization relation. First, the block form of M(M') is de-
composed into A(M') and B(M') as in Eq. 3.1-7, where B(M') is an upper
triangular block matrix. Consistency conditions follow from this pro-
cedure. Next, each block in B(M'), which has Type B structure, is de-
composed as in Eq. 3.2-13. From this, another set of consistency con-
ditions follows. In the analytic approach', there are also two sets of
conditions (see Ref.31 and Sec. 2.4.2). The precise connection between

the consistency conditions in the two approaches is not clear.
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4. EXTRAPOLATION AND INTERPOLATION OF SCATTERING

INFORMATION USING FACTORIZATION RELATIONS
4.1. Atom-Diatom Rigid Rotor

In the last chapter, we used general state factorization relations
and close coupling input data to predict cross sections in atom—diatom
rigid rotor systems. Since the input data is not ES derived, the pre-
dictions depend on the input state j. Hoffman et al. (32) in their
matrix approach study found that there is a regular variation of the
éredicted values as a function of j (i.e., the curve obtained by "join-
ing" predicted values plotted against j is smooth). If we consider
cross section j' -+ i, for 3, 2 j', then when j = j' the factorization
relation of Eq. 3.4-2 guarantees that we obtain the input as the amswer

since

= 7G' |59 s GY
- (g(j') -g‘l(j')) -sMan = sWgn

+)
$°G R predicted

(4.1-1)
(see Eqs. 3.4~5 and 3.4-6). This means that the curve for the cross
section j' » j° passes through the "exact"™ value (i.e., exactly the in-
put) of this cross section for 3 = j'. Consequently, cross sections
can be interpolated or extrapolated from two or more sets of inputs
data to a much higher accuracy than can be predicted from a single set
of input data (32). 1In this section, we examine the interpolation/ex-

trapolation procedure in more detail.

Predictions of cross sections/thermal rates of tramsitions j' - jo
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using factorization relations in the matrix approach with different in-
put state E are present in Tables 4.1 and 4.2. These tables are an ex-
panded version of those given by Hoffman et al. (32). Table 4.1 contains
cross sections for the HCl-He system at a total emergy of 772 cm L. The
exact close coupling (CC) cross sections given in the first columm are
taken from the work of Chapman and Green (68). The predictions of j'
jo cross sections using input cross sections out of the 3 = Q) - 5 states
are given in the second to the seventh column. The ? = 0 predictions
are previously given by Goldflam et al. (26). Table 4.2 contains thermal
rates for the CO-H system at 100°K. The exact CC values :are taken from
the work of Green et al. (70) and the 3- = 0 predictions are previously
given by Goldflam et al. (26).

In Figs. 4.1-4, a few typical plots showing the variation of the
predicted values of cross sections and thermal rates as a function of
the input state 3 are presented. In these plots, all of the transi-
tions j' + j' + Aj with the same positive Aj and different j' are
grouped together. Each curve must pass through the eact values at E =
j', and this value is indicated by an open circle (o) in the plot.

For both systems, the predicted values for a given transition vary
smoothly as a function of 3-. Clearly, interpolation or extrapolation
to obtain better estimate of the cross section/thermal rate is feasible.
Another feature of these plots is that the variation of the predicted

values of the transition j' + j' + Aj as a function of j for a fixed

Aj is very similar for different j'. This is more obvious if the pre-
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Table 4.1. Cross sections (Z?) for the j' ~* jo transitions in HCl-He
at a total energy of 772 cm—l as obtained from CC calcula-
tions and by using various choices of J tramsitions as in-

put data
v s a - b = ral - ry bry
i3, cc =0 3=1 3F=2 3J=3 JF=4 =5
0 1 9.8363 input 9.6542 9.3640 8.9822 8.2899 6.8787
4] 2 2.3741 input 2.1382 1.8431 1.4624 0.9715 0.4254
0 3 0.3497 input 0.2814 0.2000 0.1134 0.0392
0 4 0.0370 input 0.0236 0.0119 0.0037
0 5 0.0024 input 0.0011 0.0002
1 2 6.5567 6.7074 input 6.3282 6.0369 5.5369 4.5858
1 3 1.2934 1.4255 input 1.1112 0.8791 0.5829 0.2552
1 4 0.1613 0.2009 input 0.1144 0.0648 0.0224
1 5 0.0131 0.0206 input 0.0066 0.0020
1 6 0.0006 0.0013 input 0.0001
2 3 5.6717 5.9958 5.8679 input 5.4196 4.9844 4.1273
2 4 0.9510 1.2306 1.1058 input 0.7530 0.4996 0.2188
2 5 0.0953 0.1671 0.1343 input 0.0540 0.0187
2 6 0.0054 0.0168 0.0107 input 0.0017
2 7 0.0001 0.0011 0.0005 input
3 &4 5.1592 5.7029 5.5826 5.3975 input 4.7464 3.9307
3 5 0.6972 1.1387 1.0234 0.8803 input 0.4626 0.2026
3 6 0.0491 0.1519 0.1221 0.0866 input 0.0170
3 7 0.0015 0.0151 0.0096 0.0048 input
4 5 4.6141 5.5418 5.4254 5.2461 5.0150 input 3.8215
4 6 0.4416 1.0866 0.9767 0.8402 0.6655 input 0.1933
4 7 0.0160 0.1431 0.1150 0.0816 0.0463 input
5 6 3.7521 5.4398 5.3257 5.1500 4.9235 4.5301 input
5 7 0.1874 1.0530 0.9465 0.8143 0.6450 0.4280 input
®Ref. 68.
b

Ref. 26.
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Table 4.2. Thermal rates (in units of 10-]'0 cm3 3-1) for the j' » jo
transitions in CO-H at 100°K as obtained from CC calcu-
lations and by using various choices of J tramsitions as

input data

LA cc® F=0F=1 3JF=2 F=3 J=4 =5
0 1 1.9976  dinput 2.0243 1.9799 1.8123 1.7069 1.6450
0 2 2.5069  imput 2.3996 2.3375 2.2154 2.1054 1.9080
0 3 0.1142  input 0.1078 0.0996 0.0945 0.0802 :
0 &4 0.0388  input 0.0344 0.0312 0.0257
0 5 0.0206 input 0.0187 0.0136
0 6 0.0016 input 0.0013
0 7 0.0013 input
1 2 1.3957 1.3807 dinput 1.3626 1.2487 1.1723 1.0967
1 3 1.4550 1.5214 dnput 1.4165 1.3495 1.2632 1.1448
1 & 0.0701 0.0746  dnput 0.0631 0.0540 0.0458
1 5 0.0197 0.0223 d4nput 0.0174 0.0143
1 6 0.0102 0.0118 dinput 0.0074
1 7 0.0007 0.0009 input
2 3 1.218 1.2353 1.2490  dinput 1.1126 1.0455 0.9870
2 4 1.2103 1.2998 1.2434  input 1.1460 1.0827 0.9812
2 5 0.0509 0.0601 0.0561 input 0.0450 0.0382
2 6 0.0142 0.0181 0.0160 input 0.0117
2 7 0.0060 0.0094 0.0082  input
3 4 1.0577 1.1722 1.1853 1.1571  dinput 0.9941 0.9400
3 5 1.0606 1.2026 1.1504 1.1200 4input 1.0026 0.9086
3 6 0.0409 C.0540 0.0506 0.0460  input 0.0347
3 7 0.0105 0.0162 0.0143 0.0127  input
4 5 0.9659 1.1382 1.1511 1.1239 1.0276  input 0.9139
4 6 0.9570 1.1476 1.0978 1.0689 1.0122  input 0.8672
4 7 0.0327 0.0507 0.0476 0.0432 0.0385  input -
5 6 0.8973 1.1169 1.1297 1.1030 1.0086 0.9480  input
5 7 0.8406 1.1121 1.0639 1.0358 0.9809 0.9276  input

2Ref. 70.

b

Ref. 26.
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Figure 4.1.

L-lol

Variation of the predicted cross sections
j' > §' + Aj, with Aj = 1 and j' =0 - 5,
as a function of J in the HCl-He system at
at total emergy of 772 cm~l. The exact
values are indicated by (o), and same nota-
tions are used in Figs. 4.2-4.6
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Fig.

4.2. Variation of the predicted cross sections j' -
j' + 2 as a function of J in the HCl-He system at a
total emergy of 772 cm~1
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Variation of the predicted thermal rates j' >
j' + 1 as a function of j in the CO-H system
at 100°K
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dicted values are scaled in an appropriate way. Let S(j' IAj |§) be the
predicted cross section/thermal rate of the tramsition j' > j' + Aj using

j transitions as input data. We scale each j predicton of S(j'|Aj[3) by

the largest S(j'|Aj|3) for a range of j, i.e.,

- G'lailD
s*(3' |83 () = = — (4.1-2)
5 [5G IAde)]_

and, in particular, the largest predicted value of S(3j' lAj IE) is scaled
down to one. The scaled 3 predictons of cross sections for the j'-+>j' +
1 transitions in HCl-He at a total enexrgy of 772 cm—l are given in Table
4.3. The variation of S*(j' [Aj ﬁ) as a function of j for a fixed Aj is
nearly independent of j'. For other values of Aj, in both HCl-He and
CO-H systems, results 'simila.r to those given in Table 4.3 also hold.
This striking feature can be easily explained.

Using Eq. 4.1-1 and the upper triangular nature of F(i'[3), the
prediction of the tramsition j' - j' + Aj is given by |

s(i'|aif3) = ;Mj [g(j'ﬁ)]j.ﬂj,l 51, - (4.1-3)

As usual, the matrix and vector indices are referred to rotor states.
In Eq. 4.1-3 since B(j') and _B;_—l(.j) are upper triangular,
EG' D ]j' +A5, 543 (remember Aj > 0), the diagonal elements of
F(3'[D) =BGEY «371(3) which are nonzero are simply given by

<1 I3 _ - ' . o=l _
G D V0png Fong = BOI g0 " B Dy Foag® 4100
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Table 4.3. Scaled cross sections for the j' - j' + 1 transitions in

HCl-He at a total enmergy of 772 cw~l using various choices
of j transitions as input data

3 i=0 i=1 i=2 i=3 Ii=4 3=5
0 1 0.981 0.952 0.913 0.843 0.699
1 1 0.978 0.943 0.900 0.825 0.684
2 1 0.979 0.946 0.904 0.831 0.688
3 1 0.979 0.946 0.905 0.832 0.689
4 1 0.979 0.947 0.905 - 0.833 - 0.690
5 1 0.979 0.947 0.905 0.833 0.690

where [B(3")] 403 ,05° [g—l(?f) 1 A3 T3 are the diagonal elements on the
Ajth row of B(j') and Ajth colum of g‘lG), respectively. Using Eq.
4.1-4 and the fact that only elements on the alternate diagonals of
F(3' ﬁ) are nonzero (due to band-like structure of B(j') and g-IG) ’

see Chapter 3), Eq. 4.1-3 becomes

G AT = BUD Ly a5° B Dy Tens - ED Ky
b Y G DYy, - D, (4.1-5)
gz 13)3504p5,0 * B

] .
where £ means only alternate £ are summed over. The nonvanishing

matrix elements of F(j' IE-) are roughly in the same order of magnitude.
If for any j the sequence [5(5)]?+Aj’ Ls-(j)]§+Aj+2’ [s(3) }3'4-Aj+4, ceee
approaches to zero fast enough, the first term of the r.h.s. of Eq.

4.1-5 will be the dominant contribution to S(j' lAj G'). In this case,
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S(j'lAjla‘-) is approximately equal to

SGAID = BO Ty ag° B Dy Feag - ED By

3 (4.1-6)

Equation 4.1-6 is certainly not a bad approximation for the two systems
being considered and it can be used to explain the behavior of the Aj
plots in Figs. 4.1-4 and the figures in Table 4.3. We want to es-
tablish that S*(j'|Aj|}) in Eq. 4.1-2 is nearly independent of j'. Us-
ing Eq. 4.1-6, Eq. 4.1~2 becomes |

o B D 1y Faas * EDLias h1-7)

s*(3" |83 3) = : :
B 1y Faag © BD byl

The r.h.s. of Eq. 4.1-7 is independent of j' as was to be demonstrated.
The behavior of the Aj plots is only of formal interest, because to
generate ome S*(j' |A-] E) plot requires too many CC [§_(E) ]JT""Aj.

Finally, we consider the CO-He system at ‘a total energy of 400 cm-l
which has CC _S_(+) (3) components that converge to zero slowly. The re-
sults of predicting cross sections using different 3' transitions input
data are presented in Table 4.4. The exact CC cross sections given in
the first column are from Green, cited in Ref. 26, and the I = 0 pre-
dictions are taken from Goldflam et al. (26). In Figs. 4.5-6,

s(j' lAj I-j-) - —J- plots for Aj = 1,2 are shown. The variation of
S(3'|Aj ﬁ) as a function of j is not very smooth compared with the two
previous systems. This is especially true in the Aj = 1 plot of Fig.

4.5. 1In this case, using interpolation/extrapolation to obtain better
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Table 4.4. Cross sections (3?) for the j' + j, transitions in CO-He at
a total energy of 400 co—1 as’ obtained from CC calculations
and by using various choices of j transitions as input data

it i, cc? F=0* 3=1 F=2 3F=3 F=4 3J=5
0 1 2.545 input 2.5198 2.5472 2.3701 2.6544 2.9084
0 2 8.447 input 8.4285 8.4558 8.1927 8.4688 8.5371
0 3 2.348 input 2.3757 2.2121 2.4417 2.8913 3.0235
0 4 3.365 input 3.3571 3.1439 3.2496 3.2901 3.2020
0 5 2.170 input 2.1504 2.3720 2.8244 2.9267 3.0495
0 6 1.231 input 1.1935 1.2507 1.4476 1.4673 1.4891
0o 7 1.935 input 2.0379 2.1555 2.1163 2.0042 1.9401
0 8 0.7807 input 0.8124 0.9247 0.8828 0.7627 0.4618
0 9 1.115 input 1.0685 1.0221 0.8599 0.5210
0 10 0.4290 input 0.4362 0.3671 0.2010
0 11 0.3491 input 0.3352 0.1914
0 12 0.1106 input 0.0773
0 13 0.0485 input
1 2 2.698 2.703 input 2.6461 2.6266 3.0088 3.2348
1 3 6.549 6.564 input 6.4709 6.3599 6.5435 6.5456
1 4 2.335 2.328 input 2.3423 2.6791 2.9826 3.1138
1 5 2.416 2.438 input 2.3238 2.4735 2.5051 2.4662
1 6 2.124 2.087 input 2.2998 2.5281 2.5317 2.5687
1 7 1.025 1.030 input 1.1086 1.1949 1.1490 1.0191
1 8 1.593 1.560 input 1.6338 1.5360 1.3157 = 1.0347
1 9 0.6378 0.6176 input 0.5644 0.5630 0.4038 0.2445
1 10 0.7227 0.7538 input 0.6295 0.4526 0.2742
1 11 0.2656 0.2778 input 0.1923 0.1053
1 12 0.1749 0.2054 input 0.0999
1 13 0.0402 0.0575 input
2 3 2,837 2.811 2.7971 input 2.9291 3.2506 3.4754
2 4 5.559 5.606 5.5821 input 5.5130 5.6717 5.6910
2 5 2.358 2.300 2.3410 input 2.5706 2.7748 2.8484
2 6 2.052 2.100 2.0974 input 2.1364 2.1203 1.9867
2 7 1.933 1.819 1.8211 input 2.0680 1.9715 1.8351
2 8 0.8966 0.8727 0.8670 input 0.9146 0.8248 .0.7581
2 9 1.236 1.220 1.2470 input 1.1131 0.9802 0.8217
2 10 0.4789 0.4724 0.4760 input 0.4195 0.3188 0.1930
2 11 0.4708 0.5656 0.5262 input 0.3556 0.2155
2 12 0.1505 0.2037 0.1982 input 0.0824
2 13 0.0779 0.1542 0.1364 input

3Ref. 26.
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o ij=0 3j=1 =2 3=3 3j=4 3=5
3 4 2.951 2.867 2.8807 2.9268 input 3.2095 3.3920
3 5 5.099 5.181 5.1714 5.1765 input 5.2125 5.1535
3 6 2.260 2.114 2.1286 2.1139 input 2.3681 2.3043
3 7 1.838 1.882 1.8790 1.8057 input 1.7837 1.6981
3 8 1.693 1.540 1.5412 1.6048 input 1.6491 1.5901
3 9 0.7646 0.7332 0.7175 0.7283 input 0.7115 0.6591
3 10 0.9581 1.018 1.0314 1.0398 input 0.8487 0.7208
3 11 0.3620 0.3901 0.3970 0.4103 input 0.2783 0.1685
3 12 0.3092 0.4786 0.4504 0.4053 input 0.1874
3 13 0.0714 0.1741 0.1702 0.1304 input
4 5 2.952 2.770 2.7642 2.7843 2.7664 input  3.0226
4 6 4.842 4.907 4.8977 4.8768 4.7660 input 4.8160
4 7 2.111 1.896 1.9092 1.8638 1.9728 input 2.1045
4 8 1.636 1.710 1.6983 1.6166 1.6633 input 1.5627
4 9 1.500 1.361 1.3522 1.4263 1.5321 input 1.4575
4 10 0.6492 0.6475 0.6362 0.6550 0.6926 input 0.6034
4 11 0.7738 0.9114 ' 0.9292 0.9405 0.8713 input 0.6607
4 12 0.2541 0.3502 0.3572 0.3716 0.3289 input 0.1538
4 13 0.1705 0.4316 0.4071 0.3673 0.2814 input
5 6 2.892 2.621 2.6148 2.6082 2.5653 2.7771 input
5 7 4.633 4.699 4.6824 4.6515 4.5579  4.6519 input
S 8 1.991 1.748 1.7528 1.7215 1.8459 1.9862 input
5 9 1.479 1.598 1.5896 1.5193 1.5670 1.5462 input
5 10 1.373 1.259 1.2558 1.3291 1.4351 1.4082 input
5 11 0.5670 0.6010 0.5909 0.6104 0.6475 0.6090 input
5 12 0.6205 0.8476 0.8652 0.8771 0.8148 0.7246 input
5 13 0.1440 0.3249 0.3319 0.3464 0.3070 0.2378 input

estimates is not very effective.

In the Aj = 2 plot, the variation of

$(3'|43|3) as a function of § is smoother than in the Aj = 1 plot, and

for higher j', S(j'|Aj[3), with Aj = 2 is nearly constant for different

j. This may indicate that for higher j', the tramsitions j' + j' + 2

are very nearly energy suddem because S(j'lAﬂlE} is independent of j in
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Fig. 4.5. Variation of the predicted cross sections j' -
j' + 1 as a function of j in_the CO-He system
as a total energy of 400 cn~1
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the ES. Thus, the S(j'|4j[3) - 7 plot may be used as a diagnostic

test on the "suddeness" of the physical system.

4.2. Diatom-Diatom Rigid Rotors

Before we discuss the interpolation/extrapolation in these sys-
tems, we give some sample calculations (71) using the factorization
relations of Eq. 3.3-3 in the matrix approach. They are presented in

Tables 4.5-8. Tables 4.5-7 contain cross sections of transitioms jij é >

j°1j°2 for the pa::‘a.—Hz—pan:a—li2 system at total energy of 0.45 eV, 0.55

eV and 0.60 eV, respectively. In the first column of these tables,

cross sections generated from the effective potential (EP) method by Zarur
and Rabitz (73) are given. The predictions of j ij‘;_ > j°lj°2 cross sec-
tions using input EP cross sections out of 3-13-2 = 00, 02, 04, 22 and 24
are given in the second to the sixth columns. For all those energies, we
find that usually for ?13-2 close to jij é, the predictions are as good

as, or better than, the —j-IJTZ = 00 predictions. There are limitatioms

for jij i = 22, 24 predictions since less components of the input data

are available.

In Table 4.8, cross sections for ort:ho-Hé-—para—li2 system at total
energy of 2000 cm—l are presented. The exact close coupling (CC) and
the coupled state (CS) cross sections are given in the first and second
colum, respectively. Both of these results are taken from Heil et al.
(74). The third colummn contains the two rotor infinite order sudden

approximation (TRIOS) results of Goldflam and Kouri (29). 1In general,
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Table 4.5.%° Comparison of EP cross sections (82) of transitions
3132*3o01l0p» for para-Hy-para-Hy at a total emergy
of 0.45 eV, and predicted cross sections uaing J;jp =
00, 02, 04, 22 and 24 transitions as input data

3135 Joq30p EP® 3,3, =00
00 00 4.710(1) input
00 02 2.14 input
00 04 1.31(-2) input
00 22 2.54(-1) input
00 24 2.82(-3) input
02 02 4.634(1) 4.772(1)
02 04 2.45(-1) 1.104
02 22 1.04 7.338(-2)
02 24 2.55(=2) 1.314(-1)
02 44 6.19(-5) :
04 04 4.774(1) 4.766(1)
04 06 1.38(-2) 9.754(-1)
04 24 7.33(-1) 6.643(~2)
04 44 1.78(-3)

06 06 5.083(1) 4.765(1)

06 26 2.75(-1) 6.508(-2)
22 04 1.12(-2) 2.627(-2)
22 22 4.688(1) 4.774(1)

22 24 4.40(-1) 1.142

22 44 2.05(~3) 6.756(~2)
24 06 2.23(-4) 2.321(-2)
24 24 4.776(1) 4.768(1)

24 26 8.82(-3) 1.009

24 44 1.02(-1) 3.416(-2)
26 . 26 5.155(1) 4.767(1)

44 44 5.061(1) 4.768(2)

%Ref. 71.

bThe integers in the parentheses refer to the powers of 10 asso-
ciated with each number.

CRef. 73.



1132=02 12=04 12=22 j12=24

input 4.774(1) 4.688(1) 4.770(1)
input 1.561(-2) 4.389(-1) 9.979(-3)
input 7.330(-1) 1.660(-19) 1.983(-1)
input 3.986(-3) .
input

4.633(1) input 4.686(1) 4.770(1)

2.165(~1) input 3.879(-1) 8. 820(-3)

1.039 input 1.983(-1)

input

4.633(1) 4.774(1) 4.685(1) 4.770(1)

1.039 7.330(-1) 1.983(-1)

5.100(-3) input

4.664(1) 4.795(1) input 4.776(1)

2.523(-1) 1.561(-2) input 9.980(~-3)

1.313(-2) input

4.508(-3) 7.046(-4) input

4.662(1) 4.795(1) 4.686(1) input

2.230(-1) 1.380(-2) 3.889(-1) input

5.342(-1) 3.774(-1) input

4.662(1) 4.795(1) 4.685(1) 4.776(1)

4.660(1) 4.793(1) 4.686(1) 4.776(1)




Table 4.6.2 Comparison of EP cross section (82) of tramsitions jigé-*

jo1iop» for para-Hy-para~H; at a total energy of

0.55 eV, and predicted cross sections using j1j = 00,

02, 04, 22 and 24 transitions as input data

s b —_—

Jijé joljoz EP jljZ = 00
00 00 4.59(1) input
00 02 2.61 input
00 04 2.43(-2) input
00 22 3.67(-1) input
00 24 5.93(-3) input
02 02 4.541(1) 4.666(1)
02 04 3.58(-1) 1.349
02 22 1.28 1.066(-1)
02 24 5.16(-2) 1.903(-1)
02 44 3.00(-4)

04 04 4.662(1) 4.659(1)

04 06 4.76(-2) 1.191

04 24 9.97(-1) 9.628(~2)
04 44 5.26(-3) »

06 06 4.874(1) 4.658(1)

06 26 5.54(-1) 9.431(~2)
22 04 1.94(-2) 3.806(-2)
22 22 4.572(1) 4.669(1)

22 24 6.77(~1) 1.403

22 44 6.89(-3) 9.786(-2)
24 06 7.27(-4) 3.360(~2)
24 24 4.649(1) 4.662(1)

24 26 3.26(-2) 1.239

24 &4 2.18(-1) 4.952(~2)
26 26 4.893(1) 4.661(1)

44 44 4.784(1) 4.662(1)

%Ref. 71.

b

Ref. 73.
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3, = 02 33, = 04 33, = 22 33, = 24
input 4.662(1) 4.572(1) 4.637(1)
input 5.386(~2) 6.732(-1) 3.689(-2)
input 9.970(-1) 5.578(~19) 4.239(~1)
input 1.340(-2)
input

4.539(1) input 4.569(1) 4.637(1)
3.164(-1) input 5.950(~1) 3.260(<2)
1.277 input 4.240(~1)
input
4.539(1) 4.662(1) 4.568(1) 4.637(1)
1.277 9.970(~1) 4.239(~1)
1.032(-2) input
4.578(1) 4.691(1) input 4.649(1)
3.728(-1) 5.386(~2) input 3.689(-2)
2.662(=2) input
9.121(~3) 2.368(-3) input
4.576(1) 4.691(1) 4.569(1) input
3.295(-1) 4.760(~2) 5.984(~1) input
6.570(~1) 5.141(~1) input
4.575(1) 4.691(1) 4.568(1) 4.649(1)
4.572(1) 4.688(1) 4.569(1) 4.648(1)




Table 4.7.% Comparison of EP cross sections (A%) of tramsitions jiji -
Jojdoy» for para-Hy-para-Hy at a total emergy of 0.60
eV} and predicted cross sections using jljZ = 00, 02, 04,
22 and 24 transitions as input data

rtat

b

lez joljoz EP jljz = 00
00 00 4.518(1) input
00 02 2.84 input
00 04 3.09(-2) input
00 22 4.34(-1) input
00 24 8.11(-3) input
02 02 4.487(1) 4.6(1)
02 22 1.40 1.263(-1)
02 24 6.81(-2) 2.253(-1)
02 44 _ 5.15(-4)
04 04 4.617(1) 4.592(1)
04 06 7.10(-2) 1.297
04 24 1.12 1.140(-1)
04 44 7.71(-3)
06 06 4.807(1) 4.591(1)
06 26 6.88(-1) 1.117(-1)
22 04 2.46(~2) 4.506(-2)
22 22 4.400(1) 4.604(1)
22 24 7.95(-1) 1.533
22 44 1.06(-2) 1.159(~-1)
24 06 1.13(-3) 3.978(~2)
24 24 4.602(1) 4.596(1)
24 26 5.46(-2) 1.354
24 44 2.79(-1) 5.865(-2)
26 26 4.812(1) 4.594(1)
44 44 4.688(1) 4.595(1)
2Ref. 71.
b

mf. 73.
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132 = 02 135 = 04 33, = 22 333, = 24
input 4.617(1) 4, 400(1) 4.587(1)
input 8.033(-2) 7.891(-1) 6.178(-2)
iaput 1.120 8.581(~-19) 5.425(-1)
input . 2.061(-2)
input
4.485(1) input 4.396(1) 4.587(1)
3.668(-1) input 6.975(-1) 5.460(-2)
1.397 input 5.425(-1)

input
4.485(1) 4.617(1) 4.395(1) 4.586(1)

1.396 1.120 5.425(-1)
1.362(-2) input
4.527(1) 4.650(1) input 4.602(1)
4.346(-1) 8.033(-2) input 6.178(-2)
3.516(-2) input
1.204(-2) 3.643(-3) input
4.525(1) 4.650(1) 4.396(1) input
3.841(~-1) 7.100(-2) 7.027(-1) input
7.182(-1) 5.780(-1) input
4,524(1) 4.649(1) 4.395(1) 4.602(1)
4.521(1) 4.646(1) 4.396(1) 4.601(1)




Table 4.8.2
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Comparison of cc, CS and TRIOS cross sections (32) for

transitions j &32 -+ jo jo » for ortho-Hy-para-Hy at a total

energy of 200

3'13'2 = 01, 21 and 03 transitions as input data

-1, and predicted cross sections using

b

B 3 b c TT o TT =
3335 Jojdo, cC cs TRIOS ™ j,j,=01 leZ =03  j;i,=21
o1 01  4.81C1) 4.81(1) input fnput  4.970(1)  4.928(1)
01 03  2.4(-1) 2.3(-1) input input  2.0(-3)  1.500(-1)
o1 05 1.6(-5) 1.3(-5) input input 0.000
o1 21 7.6(-1) 7.6(-1) input input  5.000(-1) 7.39(-2)
01 23 1.4(=2) 1.4(-2) input input

01 41 1.1(-3) 1.1(-3) input input

03 03  4.97(1) 5.00(1)  4.80(1) 4.805(1)  input  4.925(1)
03 05  1.6(-3) 1.5(~-3)  1.86(-2) 1.905(-1) input  1.190(-1)
03 23 5.0(-1) 4.9(-1)  7.51(-1) 7.569(-1) dinput  7.39(-2)
03 41  9.8(-4) 1.04(-3) 0.0000  0.0000 input

21 03 4.0(-2) 3.9(-2)  1.4(-2) 2.8(-3) input
21 05  6.0(=7) 7.0(-6) 0.0000 input
21 21 4.93(1) 4.94(1)  4.83(1) 4.832(1) 4.984(1) input
21 23 1.5(-1) 1.5(-1)  2.44(-1) 2.440(-1) 2.0(-3)  input
21 41 3.8(-2) 3.7¢-2)  3.91(-1) 3.911(-1) 2.571(-1) inmput
23 05  2.8(=4) 4.0(~4) 1.1(=2) 2.2(-3)

23 23 5.16(1) 5.19(1)  4.82(1)  4.826(1) 4.983(1) 4.927(1)
23 41 3.4(=2) 3.9(=2)  2.0(=3) 3.1(-3)

3Ref. 71.
Dpef. 74.

CRef. 29.
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TRIOS predictions are just predictions using the ground state factoriza-
tion relations. 1In the o::t:ho—lilzpar:a—li2 system, the lowest rotor state
cannot equal 00 but rather 0l. To determine the fictitious parameters
[s(00) ]jljz required in the TRIOS calculations, Goldflam and Kour?I. (29)
assumed [S(00) ]5152 are nonzero for j 1 +3,< 4 and then treated the
ground state factorization relations as a system of simultaneous equa-
tions. The values of [S(00) ]J'1iz with j1j2 equal to 00, 02, 20, 04,

40 and 22 are then fixed by inverting these equations using the CS cross
sections of tramsitions 01 - 01, 03, 05, 21, 23 and 41. Comsequently,
their calculations may be regarded as an unsystematic version of the
general factorization procedure described in the matrix approach with
the choice 3 j, = 01 as input data. The predictions of j}i} + Jojjo,
cross sections using input CC cross sections out of 3-13'2 = 01, 03 and
21 are given in the fourth to sixth columms. The TRIOS predictions are
very close to the ?132 = 01 predictions. This is expected since as
mentioned above the TRIOS results are essentially generated from the CS
cross sections, which agree fairly well with the CC cross sections, out
of the 01 state.

As in the atom-diatom system, interpolating and extrapolating values
for a given cross section obtained from several sets of imput data to
get an improved estimate is possible as shown below. (The values for
a given cross section obtained from input cross sections out of the
313-2 state are regarded as lying on a surface above the 31.‘1—2 plane.) If

we consider cross section for the transition jijé + Joqdop for Jo; 2
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Py} N > 5t T o st s . . N
J1» Jog 235 then when 3132 3132, the factorization relation of Eg.

3.3-3 guarantees that we obtain the inp;xt as the answer since

() ovsa = PR ) i
5™ (3139 preatcrea = E(33351333)) s app

@G -3 ad 8 sap-Eap st G

s

13- (4.2-1)

This means f.hat the above mentioned surface for cross section jijé >
j,..,]_j(_,‘2 passes through the "exact" value (i.e., exactly the input) of
this cross section for 31372 = j ijé. This allows for interpolation or
extrapolation from other points to obtain an improved estimate. Because
of the higher dimension and nonlinear nature of the surface, more in-
put data sets are required for effective interpolation or extrapolation
than in the atom~diatom analog. If lots of data are available, inter-
polation/extrapolation can be done efficiently using standard techniques
such as cubic spline fitting (75-76). The procedure is most efficient

tet =
132 in the j 132
plane. We give an example of this kind to conclude the chapter. 1Im

where the 3132 input data points are collinear with j

Fig. 4.7, quadratic fitting is used to extrapolate the 06 - 06 cross
section from 3'1-;1-2 = 00, 02 and 04 predictions for the 1:’2-11'3.-112—1)ara—H2
system at a total energy of 0.55 eV. The data are taken from Table

4.6. The estimated result of 50.27 A2 is only 3% off the EP result
of 48.74 A2,



Predicted cross section (32)
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'Figure 4.7.

02 04 06

333,

Extrapolating the 06 + 06 sectioa from
j3ip = 00, 02, 04 predictions in para-
Hp-para-Hy system at a total energy of
0.55 eV
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S5S. ORTHOGONAL APPROACH TO FACTORIZATION

In Chapter 2 and 3, we considered factorization via the analytic
and matrix approaches. In this chapter, we will consider a third ap-
proach, the orthogonal approach. The coefficients in the ground state
factorization relations are first written in terms of 3-j symbols.
Here, procedures based on the orthogonality properties of the 3-j sym-
bols are used to invert these relations and derive the ground state
factorization relations. Hoffman et al. (32) have derived factoriza-
tions for the ES and IOS T-matrices in the atom-diatom rigid rotor
system using this approach. Iwo forms of factorization relations re-
sulted. They differ in one very important aspect. Namely, one re-
duces to an identity when the input state is also the predicted state
and the other does not.

The orthogonal approach in T-matrix factorization has been ex-
tended to the diatom-diatom rigid rotors system by Chan et al. (71).
Results similar to the atom—-diatom rigid rotor system are obtained. 1In
this chapter, we extend this approach to more general systems. First,

we summarize the symmetry and the orthogonality properties of the 3-j

symbols needed.

5.1. Properties of the 3-j Symbols (33)

(1) Symmetry properties
The 3-j symbols have the following symmetry properties
31 32 33 3 3g 3n
moupmy ) \mmy

(5.1-1)
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when (k, £, n) is an even permutation of (1, 2, 3) and

i; 3,3 33+ Hia 3, Jp 3
1-2-3 = (-1) 192931k ~“2n (5.1-2)
m B M By T
when (k, £, n) is an odd permutation of (1, 2, 3).
It is also true that
31 32 33 it [ 91 32 33
o = (-1) (5.1-3)
™ W 0y Ty TRy M3
and in particular, when all m values equal to zero, the 3-j

symbol vanishes uness j 1 + j2 + j3 is even. We also have the

condition

iy 3y 34

m my oy

=0 unless

lmi[ < ji’ for i=1, 2, 3,
m, + m, + my = 0, and
jl’ j2 and 3‘3 obey the triangular inequality. (5.1-4)

(2) oOrthogonality properties
The 3-j symbols satisfy two brthogonality relations

z[j]j1j2j3 233\ o
3 o ' ‘o m!  (5.1-5)
I3"3 momymg) \mymymy) P12
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and

o [31 3233 [ 31 3235
mm b e B Y I W M i

where the notation, [n] = 2n + 1, for integer or half-integer
n is used. Since the m's must sum to zero, the left hand side
of Eq. 5.1-6 is easily reduced to a single sum, but it has
formal advantages as written.
(3) Special 3-j symbol
A special formula, which will be useful later, is
3 30 ™M
= (-1 (I3, Sj i Sam.-
m, -m, 0 2 ™™

(5.1-7)

Finally, we remark that the 3-j symbols and the related 6-j and
9-j symbols can be computed efficiently and accurately using the al-

gorithms developeﬂ by Schulten and Gordon (77).

5.2, Applications

In the following sections we will derive the general state fac-
torization relations for the T-matrix in’atom-diatom rigid rotor and
atom-symmetric/spherical top systems. As usual for the CS and IOS
approximation, a spherical wave basis is used for the relative transla-
tional motion. So far, we have considered 6n1y the uncoupled repre-

sentation with unspecified quantization axis for the T-matrix elements.
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Sometimes, it is convenient to consider the coupled representation.
There is more than one way to couple two or more sets of angular momen-
tum quantum numbers; each results in a different representation for the
T-matrix elements. The ground state factorization relation involves
specific 3-j symbols for each representation. The procedure used in
inverting the ground state factofization relation depends on the 3-j

symbols involved. Here, we consider mainly the uncoupled representa

tion. An analogous procedure is easily adapted for other representa

tions.

5.2.1. Atom-diatom rigid rotor

We first consider the factorization of the ES T-matrix elements
<jombIT|j'm'>. Note that this representation is different from that
considered by Hoffman et al. (32). The ground state factorization re-

lations are (30)

m
<jom |T[3'm'> = ;é;(-l) o([:io][j'][:i]);i

ii_ 3 h I P
x ° ° <jm|T}00>.  (5.2-1)
00 O m -mb'm'

Equation 5.2-1 can be inverted to obtain <jm|T|00> by using the same

procedures of Hoffman et al. (32). First, we multiply both sides of
m . < . <t

Eq. 5.2-1 by (-1) 0([j])2 (J 3o 3 ) and sum over m and m' using Eq.

m -m, m'
5.1-6, to yield
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m 1 J i i

Z D °W@n3 . ° 7 | <igmiTlitet>

m m' m-m m

o [}
Fa i

= ([3,] [j']);i ° <jm|T|00>. (5.2-2)
00 O
5 ]

i, 3
Next, we multiply both sides of Eq. 5.2-2 by ([jn]);5 0 oo 0 and sum

over jo using Eq. 5.1-5, to obtain

~ V2. -
. . s o .1 s = 2t
Z Z (-1)m° 5 I031) |33,3 i3
Py om [j'] 00 O ﬁ‘mo m'
JO o
x <jm |T|j'm'> = <j@|T|00>. (5.2-3)

If we set j = 0 in Eq. 5.2-3 and make use of Eq. 5.1-7, we find that

T;_'TZ <j'm"|T|j'm'> = <00|T|00>, (5.2-4)

v
m

which is a statement of the constancy of the degeneracy averaged, elas-
tic T-matrix elements. This relation is analogous to that obtained by
Hoffman et al. (325 in another representation.
If we substitute Eq. 5.2-3 into Eq. 5.2-1, we immediately obtain
the factorization relation
L
Z z whn [ [3103"1033)°%
<j m |T|j'm'> = (-1) —_—l [i]
oo . T e
jm jmm {31
s ] . . YT 2 = ry
a3\ [3 3,3\ (3353 33

x _| <im| 7|7 ™.
00 O ﬁ-mom' 000 -m m

w?

B?

(5.2-5)
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Using the condition given in Eq. 5.1-4, we can carry out two m summa-

tions and hence write Eq. 5.2-5 in the matrix notation

(763" |Am)1; =t = £ 3 (Aan o gm TGl
(5.2-6)
where
Mm=n -n'=mn-m, (5.2-7)
[T(j'lA‘“)]jom' = <j bm + m'[7[3'0"> (5.2-8)
and
(£ 7 (D] g a1 ™™ s G
k|
i s\ [3 3, 3V [33F\[3F 3 3
x ° 7o ’ |- (5.2-9
00 O Am -m'-Am m' 000 Am -m-Am m

— - st
Setting j = 0 in Eq. 5.2-6, we recover Eq. 5.2-1. When j = j', g%.(émo
is not the unit matrix. '

In the analytic approach, if we use the same notation as in Eq.

5.2-6 , the factorization relations are

[T lAm)}jom

§ [AGG'n' |3 E)]jo pmtnt, § Amip TGS . (5.2-10)
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Hence, the factorization relations of Eq. 5.2-6 and Eq. 5.2-10 are re-

lated via
i’ ——
-— — PN B _
[E;T (Am’]:lom’,jm _2_°‘m [aG"='[3 )]jo Amim', § Amtm,  (5.2-11)
m

where

log=1 (5.2-12)

m

Exactly what is the appropriate choice of CCT terms in A( | ) in the
above equation is not clear.

Equation 5.2-6 is a perfectly valid factorization relation in the
ES approximation, but it suffers from the fact that it is not simply an
identity when j = j' for arbitrary Am. (This is possible because, in
general, comsistency conditioms provide lipear dependency among the in-
put dﬁta.) This makes the interpolation/extrapolation of the T-matrix
elements from two or more sets of data impossible (see Chapter 4).

This deficiency can be easily remedied using the same technique

employed by Hoffman et al. (32). Note that
<jum|T|0n> = <jm|T[00> &, (5.2-13)
and hence that Eq. 5.2-1 can also be written in the form

m
<JomyIT]i'm'> = ZZ -1 °(13, 115" 10512

jm =n

i3 /i 3. 3'
x o 3 ° <jm|T|On>. (5.2-14)
no -n m -m m'
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Here the index, n, has been introduced in the first 3-j symbol
unsymmetrically with respect to interchanged jo and j'. To derive
the general state factorization of Eq. 5.2-14, we use a procedure

analogous to that described before. We multiply both sides of Eq. 5.2-
’r

ol
14 by (—1) ([J]) 'mo n'| and sum over m_ and m', then multiply by
([Jol) i. 3° _i. and sum on j_, to obtain
T s =7 3 = =t
Zz ([J][J] 33, 3"\ [3 3,3
J m m' [3'] n'0 -n' m -m m'
X <j°m°|'1‘|j'm'> = <§§1|T|0n'>. (5.2-15)

Substituting Eq. 5.2-15 into Eq. 5.2-14 and doing two m summations, we

have
[T( IAm)]jomc = [J] Z e+ (Amnj n',im [T(lem”jE
jm (5.2-16)
where
3 e m+m' - j
& ;o 53 Z DT g anEg | °
J ° 0 -n
joi, "\ (33 3\[3 3 73
x| . _ 1. (5.2-17)

M -m'-Am m' n0-n Am -m~Am m

The factorization relation of Eq. 5.2-16 has the property that is an
p— : ]
identity when j = j' because G g, (Am) is the unit matrix. The G-ma-

trices, further, have the property that (32)
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t

gi (Am) » G “(Mm) = € -~ (Am) (5.2-18)
J

L.A' (AN

i
':T
if 5 is greater than or equal to either j' or 3' This result is similar
to those obtained in the analytic and matrix approaches. Since g_ ;:(Am)
is a unit matrix, this allowe for the possibility of interpolation/ex-
trapolation of T-matrix elements from two or more sets of data. An
equation eimilar to Eq. 5.2-11 also holds.

The treatment of the CS factorization in any system for T-matrix
 elements <2A|T|R'A'>, where the state labels are for the relative orbit-

angular momentum states, is identical to that for the ES atom-diatom

rigid rotor system. The factorization matrix elements [_ (M)] %oA", 2%
can be obtained from the ES factorization matrix elements
[_ (Am)] — by replacing j's with ¢'s and m's with A's and multi-

Jom',im

plylnz by i EE 2'+2'. The phase factor originates from the phase fac-
tor in {ig' Y”\(i)} given in Table 2.1. Factorization relations analo-
gous to those given in Eq. 5.2-16 can be obtained after using the fact
that <¢A|T|O0p> = <gA|T|00> 6110' The corresponding matrix elements
[g -f' a1 LAY, o can be obtained from the ES factorization matrix
elements [g g’ '(Am) ] jom', 3T by replacing j's with 2's and m's with A's
and multiplying by 12' "~Lo~ I+2’

In the I0S, the factorization matrices are in the temsor product
form of __E:%.' (Am) @L%'(_M) and g:i' (Am) @ g%'(Ak). But, if we use ro-
tational invariance and start fromJthe ground state factorization re-

lation of the form
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s st .t ¢
<J°m°2.°)\°|TIJ n'L'A'>

' A +m
Z Vg ()0 °(ummmn L]

Li 3"\ [L 3 3" [re e )\[L & &

00 O 0 -m_ m' 00 O -0 =A_A'
o ()

x <LoL-¢|T|0000>

(5.2-19)

(see Eq. 2.2-15), then the factorization relation

rGiet a1 o, = (U Z[ %%(Amnjm & G Tz
U R EHO N I L Zor' 9% -

“* (5.2-20)

is obtained.

Here

[T(G'2' |am)]. _, = <j_ Amim' £ A'-Am|T|j'm"2'A"> (5.2-21)
jom o °
ZA'
and
j'e! o T AT mm'eAA'
[=‘5'-I (Am)]Jom a - % i -1)
20 X' A
. Y 42
x ([ 112 113102D° (L] (5.2-22)
- - Ky .
. LJOJ' L- 3, it LSLO.Q,' L 2,0 L
00 O Am -m'-Am m' 00 O -Am Am-A' 7'
Li3 L i 3J\[fLe® L I3

L
x — — —— —
000 Am -m-Am m 000 -Am Am-A A
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: Setting'3'=.f = 0 in Eq. 5.2-20, we recover Eq. 5.2-19. As in the ES,
— - -‘2'
if we set j = j', 2 = &', we find that 5;'2'(Am) is not the unit matrix.

The deficiency can be remedied using

<jmgA|T|0n0L> = <jme)|T|0000> § o 8.0 (5.2-23)

and introducing extra n,l sums analogous to the earlier ES treatments.

The resulting factorization matrix elements are

'y’ o A= —RHR, . mHm A+
&g W5 o g3 I 117 TN

— Loy
LA 5 2A

x ([3,] 12,1 [3102D)* (12

. 2 - 'S ] L} A
. Lji 3L 3 3 L 20 L L lo L
n0 -n -m'-Am m' po0 -u ~Am Am-A' A'

Lji 3 L j 3\ (e 2 L % 2
X
nO-n|{Am-m-Amm| \tO-uj \-Am Am-A A[ .
(5.2-24)
— — j'z'
When j = j' and £ = &', gﬁ' ,(Am) is the unit matrix.

In Appendix C, the factorizations for the T-matrix elements in
the representation considered by Hoffman et al. (32) are briefly dis-
cussed. Here, factorization relations, which give an identity when the
input and predicted states are the same. do nct preserve certain symme-

try.
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5.2.2. Atom-symmetric and atom—-spherical tops

The .ground state ES T-matrix factorization relations in the atom-

symmetric and atom—spherical tops are (30)

k 4m
<k |T]3'k"m'> = J% D ° ° (13 11D 3

i i\ (3 5,3
b3 <jkm|T |000>. (5.2-25)
k -k_ k' m -m_ m'
o o

A procedure analogous to that discussed in the atom-diatom system can
be used to derive the general factorization relations. We multiply
both sides of Eq. 5.2-25 by (-1) ([3]) ( —m: 3 ) and sum over m and
m' using Eq. 5.1-6, then, multiply both sides of the resulting equation

by (-1) ko (I3 ]);i J Jo3 ) and sum over J and k using Eq. 5.1-5 to

ko k'
obtain
SS ‘J][j) TR E R T
. [3'l T o ' ~ ’
Joko mom k ko k n-m m
x <j ka |T[3'k'm'> = <jkm|T|[000>. (5.2-26)

As in the atom-diatom system, if we set :; = 0 in Eq. 5.2—26 and make

use of Eq. 5.1-7, we have

7 Z <j'k'm'|T|jkm> = <000|T|000>, (5.2-27)

k'm'

which is a statement of the constancy of the degeneracy averaged, elas-

tic T-matrix elements.
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If we substitute Eq. 5.2-26 into Eq. 5.2-25, we immediately obtain

the factorization relation

i
whm Hebk [ [5_T05T10GT° .
<j°k°m°|T[j'k'm'>=ZZ -1) ° °|—=_—-] 13]
jkm jk il

mm
e - -t ~ -1 - . = > . = ——
RS i i, 333\ [3 33 2T R
k -ko k' m ~m m' k-kk @ -mm

(5.2-28)

We can now do four k and m summations to obtain a result which can be
written in matrix notatiqn as

(2! | A1,

Y

3 et .
- [Lid)*® k — [T E —
( } ;ggi__mmmjom.,jm (TG | akmm) ]

(31 ik
‘ (5.2-29)
where
Ak=ko-k'=k-'E,Am=mo-m'=m-E, (5.2-30)
[T(j'k'lAkAm)]j ot = <3, Ak Amim' |3'k'm"> (5.2-31)

o

and



itk

31t _ _ . ;é -
[%E (k4m) ] -% (-1) (13,1312 [3]

jom'sim

-~

' 'V {5 3 3\(3F 3 3

i 3 3

i 3 3 o

Ak -Ak-k' k'f \Am -m'-Am m'] \Ak -k-Ak k[ \im -m-Amm .

Setting 3 = 0 in Eq. 5.2-32, we recover Eq. 5.2-25. If we set 3 =3,
— "k'
k = k', we find that ﬁ,k, (AkAm) is not the unit matrix.

If we change: the role of k and m in the above procedure, we obtain

another factorization relation

[T('n’ | Akdm) ],
o

y -
- I..LJ_'.]. : -j'm' _ —— ~
M &5 I L L E

(5.2-33)
3 iy
and [T(3 'm'lAkAm)]jokv and &J_‘T; (AkAm) ]jok"jk are given by expressions
analogous to Eq. 5.2-31 and Eq. 5.2-32, respectively.
In the analytic approach, if we use the same notation as in Eq.

5.2-29, the factorization relations are

TGk IAkAm)]J.omv

] BOERTED] gt 5 e ri * 17 Kl b} ] =
(5.2-34)
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Hence, the factorization relations of Eq. 5.2-29 and Eq. 5.2-34 are

related via

Jjm

-lkl _
E ¢ Bda) ]y g

- “— PR BUK N hrui P _ -
Slog RGRRI R DL gt aniat, 3 AGE Mwi,
m
(5.2-35)

where

) a'== 1. (5.2-36)
m

Again, the choice of the CCT terms necessary to obtain A( ] ) in the
above equation is not clear.

Finally, for two structured particles system, the ground state fac-
torization matrices are in tensor product form. Procedures analogous
to those stated so far can be used to "invert" the 3-j symbols asso-
ciated with each particle in the ground state relations. The resulting
general state factorization matrices are also in tensor product form.
Since the arguments required to do this are exactly parallel to those

already given, we will not discuss the matter any further.
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6. FACTORIZATION OF PHENOMENOLOGICAL CROSS SECTIONS

FOR ATOM-DIATOM SYSTEMS

In this chapter, we will consider the general factorization of the
phenomenological éross sections for atom-diatom systems. The exact (CC)
expressions of the phenomenological cross sections have been given pre-—
viously in terms of the reduced S-matrix elements in the translational-
internal coupling scheme (45) and in the total angular momentum (or to-
tal-J) coupling scheme (46). For the computation of the exact CC S/T-
matrix elements, the total-J coupling scheme is most appropriate since
the CC équations explicitly make use of angular momentum conservation
(58). ﬁence, the development of the various sudden approximations stress
mainly this coupling scheme (24). Traditionally, the tramslational-
internal coupling scheme is used in the distorted wave Born approxima-~
tion (DWBA) (78-79). The ES, CS and IOS approximations to the expressions
of the phenomenological cross sections have been considered in both
coupling schemes (46-53). It turns out that the gfound state factoriza-
tions of the phenomenological cross sections in the ES and I0S are readi- .
ly obtained in the translational-internal coupling scheme (51,53). This
is due to the fact that it is natural to separate the translational
and internal parts in the ES and I0S, and the translational-internal
coupling scheme is compatible with the separation. In this chapter, we
will develop the general factorization starting from the ground state

factorization using the orthongal and the matrix approach.
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6.1. Properties of the 6~j and 9-j Symbols

The properties of the 3-j symbols were briefly discussed in the
last chapter. We now consider briefly the 6-j and 9-j symbols. For
further discussion of this subject, the reader is referred to Ref. 33.

(1) General considerations

The 6~j symbol

31353,

2.1 2.2 23

is invariant on interchange of any two columns or of any two
members in the bottom row with the corresponding two members
in the top row. The symbol is automatically zero unless each
of the four triads (jl j2 j3), (Jl 22 2.3), (2,1 j2 2.3) and

(2.1 22 j3) satisfies the triangular inequality.

The 6-j symbols satisfy the orthogonality relation (33)

. 1

333,73 3; 3, 3"

= 6 . (6.1-1)
j'j"

Y 121031
2 2,1 2.2 L

The 9-j symbol
311 312 335

321 322 323
333 332 333

has 72 symmetry operations which either leave its value unchanged
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or changed only by a sign. An even permutation of rows or
columns, or a reflection about either diagonal, leaves the
symbol invariant. An odd permutation of rows or columms
multiplies the symbol by (-1)8, where S is the sum of all
nine parameters.

The 9-j symbols satisfy the orthogonality relation (33)

ABS ABS

S}:t [SI[EI[1][k1<C D tp 4C Dty = 8.5¢ Sppr -

ikE iI'KE

(6.1~-2)

(2) Useful formula:

Two special formulas which will be used quite frequently are

i, 3, 0 J i, Fi 1 .
SN NI E [570 ) ck E
i, 35 3g d3d2 345
6.1-3)
and
333 392 335
BT P L P P 1
321 333 3537 = D AT (L3;51055, D °
33333 0
313 332 333 s .
b4 " . -
3 s PO
Jpp 3pp 3y J13'23 Jaiam2
(6.1-4)

Another formula which will be used later is
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Z ( l)Ji-i-Jf 10 Jg e dg |35 %
= J J T s '
f i f lfjf Lf L

i L
P 3 35 Iy
Jg 2¢ I | |35 %2 3¢
X €3 8 9y jiii
]
K, K K | | KR
1
K X E R K H
. |
=) (-D” [H] 3 j 2, 2L
L KT, X g 33 Lip <8y 8y Ly
]
Jg 3g Le| [ % % Lg

(6.1-5)
where

= - K¢ - ] 2 ' ]
§=1; +L; =K +E, 2Kj+H+K+Ji+jf+2,i+2..

(6.1-6)
The proof of this formula is given in Appendix D.

6.2. The S-Matrix in Different Coupling Schemes

To describe the dynamic of an atom-diatom collision, we need four
sets of angular momentum quantum numbers -- namely the rotational angular
momentum quantum numbers j‘m' of the diatom before and jomo after the
collision, and the relative orbital angular momentum quantum numbers
2'A' before and 9,010 after the collision. There are three possible way;

of coupling these four angular momenta into pairs. We only consider the
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total-J and translational-internal coupling scheme. Various conventions
are used by different authors to define the S-matrix elements. These
differ from one another by phase factors.‘ In the following, we follow
mainly the treatment of Coombe and Snider (35) except the "standard phase"
convention (57) is used.

We first consider the total-J ('Iof—.]) coupling scheme. The total

angular momentum (J) is conserved in the collision

1, +_go =J j'+2'=J. (6.2-1)

Using this vector coupling scheme and rotational invariance of the S-
_operator, the reduced S-matrix elements SJ(jR,I 3j'2") in the total-J cou-

pling scheme are defined by (35)

j 4m +2 A
. SV 10ty = (o o 0 oo _ J™M
<J°m°sa°x°|s|3 n'2'A'> = (-1) JZM (-1) (31
j 2. J J 3"
x| o ° s7(32]3'2" .

-m_-A_M -M o' A'
o ‘o
(6.2-2)
The "factorization" of the magnetic quantum number dependence on the r.h.s.
of Eq. 6.2-2 follows from the Wigner-Eckart theorem (57). The inverse re-
lation is (35)

j +2 m 4+ .
g linn =0 ol (pe ol nH
molo M
a's’ (6.2-3)

jo L. J Jj' e
x ° <jm 2 A [S|3m"LA> .
o -} M| |-Ma' A" oo oo
o “
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An alternative coupling scheme involves the change in internal and

relative translational angular momenta

jp-i'=Lr ¥ -L& =L. (6.2-4)
The reduced S-matrix elements S(jof.olLl j'2'), in this so-called transla-
tional-internal (Tr-Int) coupling scheme, are defined by (35)

j 4m +2 )
<i @A IS5 = (1) 000 (™ 1 (-D ([

Lo

3, Lj' 'Q’o L
: S(jozolLlj'Z') .
o, O m' -).o o '

(6.2-5)
The inverse relation is (35)

j0+2'0 _;5 m°+l° Lic ;2
S(I 81T = (D ° (i Ie'DTT } D 1oy’
m (¢
[«
m!l'

i, L 3 2, L2

- x <jm L A |s]i'm'e"A">
-m_ -g mn' -A_ 0 X’ 0oooo0

[o] [+]

(6.2-6)

The reduced S-matrix in the two coupling schemes are related by (35)

_ I 9 2,'+jo+J+L
(3 LolLl3"2" = ([j.m.] g -1 [31

i 2,3

J
s7(3 2 _l3"a" (6.2-7)
L' 3i'L oo
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and

L'4+j +1+J

s7(32,13'2" = (1L DE ] D) (LD*

L

jo 2 J
x ° s(i & JuLliten . (6.2-8)
PR j' i o0
We now consider the factorization of SJ(joﬂ.olj'l') and S(jololLlj'SZ.')
in the ES and I0S approximation and, in particular, the ground state fac-

torization. From the results of Chapter 2 and using Eqs. 6.2-6 and 6.2-5,

we have that the ES factorization relations for S(j°2°|L| j'R.')ES are

j it ( _[1]_) 3

s rg = | -
S(3 L, 1137 2" oo § mZm' (-1) 57
wo
i, Li'y [ 3 L3
x —
-m -0 m' -m -0 m
A * A A
Yj otP Yj a B Yj.m. ()
A o 0 =0
x ][ at Y} ;(f) scjzolLIJz )gs -

(6.2-9)
When _;f =m= 0, we must have j = L so Eq. 6.2-9 reduces to the simple
form (35)

3 Lj_ 3
S(jozolLlj'z')Es = (-1) ] ([jol);5 o] S(molLlozl)Es .

00 O
(6.2-10)
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The simplicity of the above equation is because the intermediate cou-
pling parameter L provides a natural expansion parameter for Sﬁ in terms
of {¥, (R} in Eq. 2.1-2 (35).

The ES factorization relations of SJ(jozolj'f.') can be obtained

similarly and in particular, the ground state factorization relations are

3 J'HZ,O 3‘5
S (jololj'l') =3 (-D ([3'105 1187 1ILD)
L

L3 3 i & J '
x ° ° o} st loan . (6.2-11)
00 O 2, 3" L °

These are more complicated than the relations Eq. 6.2-10 in that they in-

volve a sum.
The I0S factorization relations for S(j_2_|L|j'2') and SJ(jozolLlj'ﬂ,')
can be obtained similarly and the ground state relations are (35)

j+2

3
- ° ° sl D

L'-2 4L
. =¥V = 1
S(JOSLOILIJ ies =1 o

Lj, 3" [L,
x ° S(IL|L]|00) oo (6.2-12)
00 0 00 0

and
L'-2 +L 3
s7(3,2, 13721 g = R Gt R IO [ERIERT A
Li 3') jue o' {53 & J
x ° ° ° % awfoo) -
00 0 00 0 2' i L

(6.2-13)
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Again, the relations for the Tot-J reduced S-matrix are more complicated

than those in the Tr-Int coupling scheme.

6.3. Phenomenological Cross Sections

The calculation of transport and relaxation coefficients involves
computing bracket integrals which are matrix elements of the Boltzmann
collision operator. Since the matrix elements are isotropic temsors,
they are completely determined by their scalar contractions. Each scalar
contraction, in turn, can be written as a linear combination of the
spherical components of their irreducible tensorial parts, and the
spherical components can be given in terms of the generalized phenomeno-
logical cross sections. The details of the derivation and the types of
generalized phenomenological cross sections necessary to describe certain
transport and relaxation phenomena have been thoroughly studied (45-50,
80-81) and will not be repeated here. The expression for the generalized
phenomenological cross sections for the atom—diatom system written in

terms of the reduced S-matrix elements in the Tot-J coupling scheme is

(46)
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K <K'R? ' T_ot_
oKy 3RGK] T RALL RI-21-% 4L
o Kpoo 1 = ) (-1) i [(3,103.]
Sade 4042 Tot-J k2 0.2 i"vf

i3¢ 353¢ TN lof ot lar'5

IgJ¢
] ]
o Te R Al [ e K Yy

x ([2.102, 310201020
17T 0o0o0/\oo0 o0

-1 1
Jg e I \3g %e Igf

J i
X935 &5 I\ B 9y [63fjfjij;‘szfzfziz;'sai.@f"f‘3%"%’331(31"1‘3’?9]'
Kj KR, K K.,'! K;L K (6.3-1)

In this expression, primed and unprimed quantities are, respectively, pre-
and postcollisional quantities, and the i and f denote the initial and
final states of speci:roscopic transitions which occur during a collision;
E is the total energy and' ki is the precollision wavenumber corresponding
to the initial translational energy; Kj’ K,Q,’ and K are the rotational,

orbital (from velocity), and total tensor indices.

Here, the rotational and orbital tensor indices couple as in Eq.

60 2-1, that is

+K, =K K! +K! =K. (6.3-2)

L~

|

k!
|
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The Tot-J coupling scheme is the natural choice for the S-matrix repre-
sentation. An alternative coupling scheme for the tensor indices, paral-

lel to that in Eq. 6.2-4, is

Ej-_K-g:E 55,—52,=§’ (6-3"3)

and the corresponding cross sections are related to those defined in
Eq. 6.3-1 by relations amnalogous to Eqs. 6.2-7 and 6.2-8 (81-82). We
will return to this later.

We can rewrite Eq. 6.3-1 in terms of the reduced S-matrix elements

in the Tr-Int coupling scheme by substituting Eq. 6.2-8 into Eq. 6.3-1,

to yield
TRI'R"Y 1_ov_ 0va0tas 4
KyK, ;KRS a RL-Ri-R R LRI+ 4 ML AL,
o () == 1 114 (-1
st=1 TOt-J kz 2' 2' L
Jide I43¢ i “ivE My
L
L XA
lilf £
] 1
5 R.f Kz R.i g'fKR:!'i
x ([3LI03310R 10 3L, 1ML ° [R11[R}]
b g el § £ i**f f i 0 0 0 0 00
. . Jo 2o I J\GL AL T
2 Jf-”.{ jf 'Q‘f Jf ig 21 Ji £f £°¢f £f £°f
X -0 13,1031 ' s t st j. %, J PRE M|
Ji‘]f i £ Zf Jf Lf ﬁi ji Li ii’'i i1

t
KszK KszK

LAl * - to?
x [GLfO GLiO - S(jfgflLijfzf) s (JizilLiljizi)] ’ (6.3-4)



136

where the energy labels on the S-matrix elements have been suppressed.

The summations on J i and J £ can be performed using the relation of Eq.

6.1-5 to yield

L1-R1-% _+2

et
Rk KoKy R £y ety
G’ (¥) =—— ] )1
Py Py [] TOt—J 2
3gd¢ 3335 kyv 250, Ly
10"
2i%s Lg

A ' % ] t
(L3I03108, 300 3L, 112, 1) % (211 1R]]

L]

v Ry gt
Q'f KR, li R’f K,Q, 21

0 00 0 0O

]

K. K'H
H+K-K!-K' 33
J (- ¢ 3@
H K;L KR,K

]

w? ]
K, K} E) (K Kp B
» 'y
IR P MR NS R

rS ] A ]
Jg g gl | % %g T

- A\ KAl % L XAl
TR sGtelr lipen s L L, 135D,

(6.3-5)
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where wehave used the fact that the angular momentum quantum numbers

are only integers in simplifying the phase factor. We can define modi-

fied cross sections

K K ;K'K' LI-21-0 +4, 3
2 j’ 2 J =L £f 71 TE L st st
°y e ®rrtae"2 ] Lz 1 (133103008, 108 ML 1L D)
i3 il iv 48
2% Lg
fov vy ot K. K!'H K, K'H
E,f KR, 2.1 2’f K!Z, Sl.i j 2R
4 3 CH T
x R0 00 oo 0 <3:3iLyddby ity
- =1
JgdgLe| [%g %L
- ot k7. A
x [sto 61’1" S(jfzflLfljfzf) S (Jizi.ILihizi)l > (6.3-6)
which are related to the original cross sections by
=K '=K? & iRt
Ksz ;K,'Q,K:'] z HHK KSL Kj Kj Kj H Ksz ,Ksz
) (K) o 2 (‘1) [H} ' Y vy (H) _
i'f Ji°f
(6.3-7)
The inverse relation is
1 Zip?
KK, KK ; R-BHR K} Ky Ky Bl KeKysRoRy
o @, .=) D K] Yo O. = <10 (K
jijf jij"f Tr-Int £ KJZ, KJZ, K Jijf jiJf Tot-J.
(6.3-8)

The cross sections defined in Eq. 6.3-6 are equivalent to the phe-

nomenological cross sections defined using the Tr-Int coupling scheme for
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the rotational and orbital temsor indices (Eq. 6.3;-3) (45,51). The Tr-
Int coupling scheme is a natural choice for the reduced S-matrix repre-~
sentation for this form of cross sections as is explicitly shown. The

relations between the two forms of cross sections and the advantages and
disadvantages in transport coefficient calculation have been considered

by Chen et al. (81) and Hunter (82).

6.4. Ground State Factorization

It is a simple matter to derive expressionsfor the phenomenological
cross sections in terms of S-matrices with arbitrary initial state
(using the S—-matrix factorization relations). However, here we consider
more useful factorizationmsinvolving only phenomenological cross sectioms.

We have seen that the ground state factorization relations of the
reduced S-matrix elements in the Tr-Int coupling scheme are simpler than
those in the Tot-J coupling scheme. Consequently, here we will use the
former since it leads to a less complicated derivation of phenomenological

cross section factorization.

In the ES, using the ground state factorization relations for the

reduced S-matrix elements, Eq. 6.3-6 becomes
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'R
KoKy sKokK; R1-21~0 +2 1.4
o] _ _T_ £f17f 71 £f-1
i;3¢ .‘i!j% (H)Tr-Int - 2 i (-1)
el 1t Yibe Iy
1ot
2jeL L,

x (L331033105,003, 100, 118 L, 1L 1D? [2]0})

o o o (kEmE) (R Ry E
Le KU 2| %g Xo Bq) [Tg 3¢ 3| [Py 35 35} ). v\ et
*10 0 oflo o o/lo 0 o oooJijii 114
Jg 3g L) [%g 25 L

* *
x [sto 51.10 -8 (szflLflozf) S (L8, |1, ]02)] . (6.4-1)

When j]!_ = j% = 0, it is required that K:'i = 0 so Eq. 6.4-1 reduces to

3
oK' r_gt_ A
KoH ;K0 o R S S N U [C 0 | EPRY TS
L L
N j 00 Tr-Int k2 L0 [H]
10¢?¢
2301
v Rt oot K. K'H
Zf KR. 2,1 R,f KR. R,i % e
?
*lo 0o oflo o of <%t
t =
e g 3¢
. * . ' _
x [5jfo 531.0 - s L l3. 1000 5T, 1500000 (6.4-2)

Using Eq. 6.4-2, Eq. 6.4-1 becomes
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2
K,K.:K'K! k +3 1
o * 3 T, =R ¥ DT (10,0, L, L ED 2
3.3, 333 k,y L.L
13g 333¢ 30 Lile
. .. (k. k'E .
Ledgdgl Ly 3335 |33 KoH 3Kq0 -
P o
*1ooo0floo o {3sd5 1y T1,L.00 Tr-Int ,
s st
Jg 3 Lg (6.4-3)

where ko is the precollision wave number corresponding to the initial
translational energy of the input states. This is the ground state fac~
torization of the generalized phenomenological cross sections. The
spectrocopic coefficients of these factorization relations depend only on
the quantum numbers and the tensor indices of the internal motion. This
is a consequence of two features. First, there is no coupling between
the internal and translational state angular momenta in the spectroscopic
coefficients of the ground state factorization relations of the reduced
S-matrix elements in the Tr-Int coupling scheme. Second, the intermediate
coupling parameters Li and Lf are natural parameters for the spherical
harmonic expansion of the conserved angles of the internal coordinates

in the ES (See Sec. 6.2). These factorization relations have been ob-
tained previously by Coombe and Snider (51).

In the I0S, results identical to Eq. 6.4~-3 can be derived (51). In-
stead of Eq. 6.4-2, we have
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RgHl 3Kg0 n e TR e e e had Sk &
o e -1 %

Tp?

Like
1] KK'H
Le Ko Zil [ 2%y %5 (3 % 26|35 % Y|} 2 2

T =

000 /)looojlooojloo o¢%% i
]
e g Ig

X

. * - '
x [sjfo sjio ~ (333 [00) s (343;134[001 . (6.4-4)

The corresponding IOS ground state factorization relations are idemtical
to the ES results since only locality of the S-matrix in internal co-

ordinates is used to derive these relatioms.

6.5. Orthogonal Approach to General Factorization

In this section, we will consider general state factorization
using the orthogonal approach described in Chapter 5. The matrix
approach will be considered in the next section.

To develop the general state factorization relations, we invert Eq.
KR.H ;KE'O
6.4~3 for oI‘iLf 00 (H)Tr—Int using the orthogonality properties of

the 3n ~ j symbols. We multiply both sides of Eq. 6.4-3 by

Kj K; H
J ] \ ] ;5 s ]
(R, 10R31 CILgILED 2] 3, 35 L)

Jg 3; Lt
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and sum over Kj and K:; using the orthogonality relation of the 9-j sym—
bols (Eq. 6.1-2) to obtain

K, K'H
I I (LI j 2
R KD (ILIIILED®< 3, 3 Liyo
KK} 373 e i1 3 3333 & rr1ne
ig Jg Lg
kﬁ Le 3g 3g)|(g 35 3§ Kln K30
'k—z([:l ][Ji][J 103 ][H]) o000 llo oo LiL:'EOO(H)Tr—Int'
1
(6.5-1)
Next, we multiply both sides of Eq. 6.5-1 by
L} 3 3 L 3; 3]
ig 5 | £ 0E s SPETN e She A
and sum over j i and j £ using Eq. 5.1-5 to yield
K,H ;K'0 2 .
LA 4 ko, it
o i £91
(8) == 1 1 D K. 1K, ,]
L!L o0 Tr-Int 2 . ' i
if ky ;3¢ KK}
{[L'm 1010, 1\’ Le Jg 3| (T3 3533
|\ [H][j][Ji] ] \o 00 jlooo
K, K'H
33 KK, KK}
x 333 Yyp0 *3 (H) (6.5-2)
jijf jiip »Tr-Int .

3g 3% Lt
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When L;_ = L% = 0, Eq. 6.5-2 becomes

R al
0) = ST O _

o

where K."l ranges over all possible values for which j;_, j% and K:} satisfy
the triangular inequality. The relation of Eq. 6.5-~3 can be interpreted
as a statement of the constancy of the "degeneracy averaged" elastic

generalized phenomenological cross sections in the ES and IOS approxima-

tions.

If we substitute Eq. 6.5-2 into Eq. 6.4-3, we have the general

factorization relation

K K,;K'K! 2 o
o 27377473 - =k_;'_ ) ) : 1):lf-i-:|i--l-jf-'-:|i
§ydg 33 T Tr-Iat 2 2% g
g0 KgKyr | Lely
;e
[311030305,.305, 103 1[3115
et I 90 | R [ 8| 34
33103
Le 3¢ 35\ [Ty 35 35 [Tg 3¢ 33\ [y 35 34
o o o flo o oflo o o]Jlo'0 O
K, K' H XK. X'H
33 _j _J Kg'_K-j; ;'KJ'
x<{3 i'L RS AR N _
1791 M0 ) _1 1 33, T30 ) M (6.5-4)
3¢ 35 Lg £ 3¢ g
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When ?;. = 31'5 = 0, we recover Eq. 6.4-3. When ?j"_ = ji and 3-% = j"‘s,
Eq. 6.5~4 cannot be reduced to simple form. Note that, to gemerate a
generalized phenomenological cross section with a given set of temnsor
indices, besides requiring cross sections of all possible final rotor
states for a given initial rotor state, we also need cross sections
of all possible rotational temsor indices. Ome anticipates using the
factorization realtions in predicting cross sections for cases where the
input cross sections are not obtained from the ES and I0OS approxima-
tion. Thus from the computational point of view, it may be better to
use the ground state factorization relations because of their simplicity.
However, from the results of the degeneracy averaged cross sections anal-
ysis in the atom-diatom and diatom~diatom systems, we might expect that
the predictions become less accurate as the input state is removéd from
the predicted state. This needs to be tested numerically.

In the aﬁove analysis, we have obtained a factorization that has
"input data" derived from transitions out of the arbitrary state 3;3%.
By interchanging the roles of Ei?f with 3-;3%, we also have factorizatioms
that have "input data" derived from transitions into an arbitrary state

g
6.6. Matrix Approach to General Factorization

We now consider the possibility of using the matrix approach to de-
Ksz ;K;LK.,"

velop the general state factorization relations for © v < C(H) Int®
jijf jijf Tr-Int

For a given set of tensor indices Ki and KR,’ the ground state factoriza-

tion relations of Eq. 6.4~3 can be written in matrix notation
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SUIEIRRE) = M35 |RIKE) - s(00|0HE) , (6.6-1)
where
KQK.;KE'K'.
[SGliLRIR D], . =0~ *I @, (6.6-2)
idf did¢
M( IK K n) _i jf+ji =1 ' - 3
E(CHM g, =2 D (133103103103, 1ML, 1L 1(BD)
i'
. e (R K'E
Ledgdgl [Ty 3535) V33
1000/ lo o o<zl - (6.6-3)
Jg 3g L

Here, the labels of the tensor indices Ki and KR, have been suppressed.
The structure of the inatrix M is determined by the 3-j and 9-j

symbols of Eq. 6.6-3 which vanish unless
(a) the triads (Lp ¢ 3D, (Ly 3; 35 (R 3; 39, (K3 3] 39,
(B L 5 Lf) and (Kj K:; H) obey the triangular inequalities
and

(b) L+3f+ and L +Ji+Jiareeven.

The structure of M can be easily determined from these conditioms.

The techniques described in Chapter 3 can be used to invert Eq.
6.6~-1 for some combinations of the tensor indices Kj’ Kj and H. Before
giving a detailed discussion of this procedure, we first compare the
factorization relations which would result from the matrix approach to

those obtained from the orthogonal approach.
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The general state factorization relations obtained from the matrix

approach are of the form

SGPEIRED = BGILIKIRE - G KE, ) - 5GIlRE® ,

(6.6-4)
where g’lGiEf If:'ifjﬂ) is the "inverse" of g(ﬁ'iﬁ.f Ii:'.i_K-jH). These rela-
tions are far simpler than those from the orthogonal approach (Eq. 6.5-4).
Instead of requiring input cross sections with whole ranges of rotation-
al tensor indices f} and Ej » We only need cross sect;‘.ons with a given
E:'i and Ej‘ Nxmerically, Eq. 6.6-4 has a great advantage over Eq. 6.5-4
as long as __M_-l is not very difficult to generate. We now consider a few
simple cases where g’l can be easily determined using the techniques dis_—
cussed in Chapter 3.

Tbe simplest case of Eq. 6.6-1 is when Ki'i = Kj =H = 0. The cor-
responding cross sections are very similar to the dege.neracy averaged

cross sections discussed in previous chapters and

K2 TR

('3 [000) ], = = ([3'11IED? . (6.6-5)
3 ki' 000
Matrix M has Type A structure (cf. Chapter 3). The general factorization

can be easily wri.tteﬁ down using the appropriate procedures.

When K:'i = Kj = 1 and H = 0, the matrix elements of M are given by
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IHMLA GHEIGEAG IR 2

(3331|1200 =

sLesdgde
: .1 s =1 .
*loo0o0/)looof )iri.1( Sy~ (6.6-6)

Because of the presence of the Kronecker delta 6L1Lf’ the number of non-
vanishing components of the vector S(00|000) on the r.h.s. of Eq. 6.6-1
is much smaller than that for §(jij,'£.|110) for ji # j%, i.e., g(jij%lllO)
are not square matrices. This makes the inversion of Eq. 6.6-1 rather
difficult. But, when ij=3;= j' we must have

('3 |110) ]I‘L’jijf « 6jijf . (6.6-7)

This relation follows readily from the triangular inequalities implicit -
in the 3-j and 6-j symbols in Eq. 6.6-6. The matrices M(j'j'|110) have
Type A structures and the first row consists of all zero elements (see

Fig. 6.1).

To conclude this section, we consider one more case, namely K5 =
Kj =H=1. Forj; =i M(jij;llll) has Type B structure (see Fig. 6.2.).
Thus, procedures éppropriate for this kind of structure can be used to

derive the factorization relations.

6.7. Other Factorizations

So far, we have considered only the factorizations of the cross

sections in the Tr-Int coupling scheme. Factorizations in the Tot-J
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(Li Ly)

00 11 22 33 44 55 66 77 88 <o -

00
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66 X X X
77 x X .
88 X x .

Fig. 6.1. Structure of g(j'j'lllO), for j'

0
N

coupling scheme can be obtained from the former by using the transforma-
tion relations of Egqs. 6.3~7 and 6.3-8.

The expressions Afor the Tot-J coupling scheme factorization rela-
tions are very complicated. It turns out that factorization relations
in the Tot~J coupling scheme which differ from those just mentioned, can
be obtained directly without using the Tr-Int coupling scheme as inter-
mediate in the %~initial and 2-final I0S epproximation considered by Fitz
et al. (46).

The 2~-initial IOS expression for the Tot-J coupling scheme cross

section is (46)
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Fig. 6.2. Structure of ggjijéllll), for jij' =11
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An analogous expression in the 2-final I0S approximation can be obtained

if the K!"L in the last 3-j symbol is replaced by KR,' The two expressions

are equal only if Ks'z = KR.’

When ji = jé = 0, Eq. 6.7-1 reduces to

ot
KoKy3Kg0 K 4K +j

o. . -1 .

i ' -35
3,3, (1351051} D)

M =
00 (Kl)Tot-J

owwlﬂ

. Y T
JiJij KszK

X0 0 o 0 00

2
Ly Ko A B, 2%

£
x ) [2,102.] ; -8.78."),
‘Q'ig'f i £°10 0 O 0 jf Jf Ji

(6.7-2)

where the first two 3-j symbols vanish unless jj + jg¢ + Ky and K;z, + Kg, +

KoKy3Kg0 o
Kj are even. This means that the %-initial I0S ¢ 343¢ 00 (€99

vanishes unless g tigt Kj and KR', + Kl + Kj are even. Using the parity

properties satisfied by the S-matrix elements, it can be easily shown

that the parity of ji + jf + Kj and Ki + K,Q. + Kj is the same.

Equation 6.7-2 can be written in the form

.

-1 _1 .
0 00 00 0 13 0 0 Prot-3
L}
. o | 2y Kg 2|2 e bt
= ———— ]
=7 (Bl JED 2% (21lel o o o | ©50850%35;,
0 if

(6.7-3)
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which is well-defined when the cross sections are derived from the 2-
initial I0S approximation. When cross sections are derived from other
methods, Eq. 6.7-3, in general, is not well defined, except in homo-

nuclear diatom systemé with even Kj. Using Eq. 6.7-3, we can rewrite

Eq. 6.7-1 in the form

- 1
KoKy 3Rk 12 AAAAR! K14, +i 1L,
_0 3y RTINS B A e
O. j L N (K)Tot—J 2 ( 1)
Ijde I5ds Ko, LLL_ |22
i if if
x CROEI0LI0,105,D7
gitdglliegllydle
] 1  § \ ] K KI K!
3pdg Ry \[ 313 K5\ K Ky Ky e 5
X

_ -)‘i >‘f )\i-lf -J\i )lf )\i—)\f )\f-ki 0 )‘i_)‘f lf—ki 0 li-kf

." CR ] s = 20 -
31 33 Li}(Jf 3g Lf) g dglell 3331 1y

1
x (L IL.D
11 0 0 0/{0 0 0 f|-2. 20 [|-A, A, 0

(K

2) Tot-J °

-1, -1 .
L, Lg K, R; Ky K, KK, K30
x (6.7-4)

o
0 0 O 0 00 LiLfOO
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An alternative factorization also exists. Instead of dividing both
sides of Eq. 6.7-2 by 3~j symbols, we can use the orthogonality properties
of the 3-j symbols (discussed in Chapter 5) to remove the first two 3-j

symbols on the r.h.s. of Eq. 6.7-2 and thus obtain

K. ( i 3g & “ K} KR‘K) KoK, 5K L
-1 i '
KEK -1 [Kz”K] 000 flo ooi%; .0 O(KIL)Tot-J

2. K & Y
Ki+j i 27t
i 2791 . R
0 i"f
Zf 2.%
x [ -s.t st . (6.7-5)

S $. . .
330 30 T3 3y

Hence, instead of dividing by 3~j symbols, we introduce sums on the ten-

sor indices K

2 and Kj. Using Eq. 6.7-5, we have another factorization

relation
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. o . ' ] 3
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Other factorizations also exist. For example, if we let KSZ. = 0 in

Eq. 6.7-3, we have that

- - ' - - '-. '.
SR K] (cn &t ke ")
0 0 0O L jj_jf 00 2 Tot-J

2
]
. o 2y Ky Xe
=— ([5;003, D77 1 [2108]
K 2 0 0 0
0 iVf
L, f.%
x 16, 98 g-5. 8.1, (6.7-7)
357 Jf Jg I3

which is well-defined in the case of 2-initial IOS cross sections and in

homonuclear diatomic systems with even Ki for cross sections generated

The corresponding ground state factorization rela-

tions are
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o £ @ g )

A i+x f+1< -!-K:!!-K;Lﬂ i+j]!.
TR M LS S 5 J

(-1 3

[ dsde Ry didp K
x (13]10EL10,10 D%

-li Af Ai-lf —Xi Af )‘i-)‘f
) 1
R Ky K R Ky K 1, y
x Dt
)‘f—)‘i 0 }‘i-)‘f )‘f-}‘i 0 )\i-}\f
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P Y 'Y ] 21 = =1 = v
3333 Byl [ dg el JedeLe|f 35 3; Li‘\ Ly e Ky

X
0 0o0floo0o [\-a20]|-xn0]looo
1.x?
OKz,KR’O
] -
* 91, 0 0 Erory- (6.7-8)

Analogous results in the -final I0S can be readily derived.

Finally, we remark that gemeral state factorization using the matrix

approach is possible for some types of Tot-J phenomenological cross sec-
tions.
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7. ES FACTORIZATION RELATIONS AND CONSISTENCY

CONDITIONS FOR DISSOCIATIVE COLLISIONS

In the present chapter, we consider the ES factorization relatioms
and consistency conditions for collision-induced dissociation (CID)
processes (36), which are important in the kinetics of high-temperature
gases. The corresponding exact factorization relations and consisteancy
conditions and their reductions to the ES form will be considered in
the next chapter. To conclude this chapter, we illustrate the useful-
ness of the ES factorization relations in predicting vibrational enhance-
ment/inhibition in specific dissociative channels for the collinear dis-

sociative process
A+BC+>A+B+C

A truncated square well is used as the binding potential for oscillator

BC.

7.1. ES Factorization Relations and

Consistency Conditions

We are concerned with collisions between a nonreactive projectile
and a molecule which can dissociate. The projectile can be an atom or
a nonreactive diatomic or polyatomic molecule (e.g., a rigid rotor or
a vibrator). Let Has be the Hamiltonian for the separated projectile and
molecule, and Vi be the sum of interactions between them, so the full

Hamiltonian for the system is
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H= Has + Vi. (7.1-1)

As usual, the internal coordirates and the relative nuclear coordinates

are denoted by r and R, respectively. In the coordinate representation,

the asymptotic bound state eigenfunctions of Has have the form
oy (T B) = <r R[Mk> = <x[> <R[k> = ¢, () % (B, (7.1-2)

where ¢M(£) is the internal wave function for bound state M and Xk(—R) is
a plane wave of relative momentum k. The full scattering statesu%'m(_lz R)

corresponding to q:m‘(; R) are given by

IPf,k(z B = <r R|0"|Mo>. (7.1-3)
The Moller operators, Qi = 2im e+mt e_mast through the corresponding
t>» : .
T-matrices
™ = v, o, (7.1-4)

can be used to calculate molecule bound state to bound state or bound
state to breakup transition amplitudes by taking appropriate matrix ele-

ments between the Has-eigenvectors (see Appendix E). For breakup transi-

tions the Eas-bras correspond to

Gog g T B = < RimEzk> = <rfmka> Rlk> = ¢,(0) x® (7.1-5)
wvhere m labels the final internal state of the projectile and two or more
molecular fragments and K are the corresponding relative asymptotic mo-

menta of these fragments. Of course, * (r) must be obtained by solving
e (T
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the scattering problem for the corresponding molecular fragments. (The
¥ labels denote the boundary conditions taken for this scattering prob-
lem in the usual way.)

If energy transfer or dissociation is induced by a suitable high
energy projectile striking the molecule, then, we might anticipate a
regime in which thé internal nuclear coordinates of the molecules and
projectile do not change significantly during collision (i.e., while
Vi operates). At such high energy, Vi is impulsivein nature. Let H
denote the full Hilbert space of the system and H = Hrel @H int be the
decomposition of the space into projectile-molecule relative and intern-
al parts. In the ES regime, the appropriate T-matrix elements with re-

spect to the Hrel’ regarded as operators on Hi.n , are local. Thus

t

T &) =T @ 8z - . (7.1-6)

The factorization relations and consistency conditions can be readily
derived using the technique of Chan et al. (31). We will drop the k, k'
labels for notational convenience.

Since Ti(_;_) ¢2_4(£} is in Hint’ we can expand this function in terms

of the complete set of Has-eigenfunctions in the H int space to obtain
+ *= = 3
T (D) 630 = ] M[T [ () +] | & <R3|T [®> ¢7(x). (7.1-D)

Suppose that r may be decomposed as (x, y) such that ¢§(x, y) is amalytic
in x at x = x with an Nth order zero there, then (36) we obtain the con-

sistency conditioms,
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5
¢mK

_ n f _ n
] it |2, | +] | & <oz T £
M ax =X = =X

m

(7.1-8)
forn=0,1, ..., N~ 1.

These may be reduced to an equivalent family of independent linear re-
lationships with constant coefficients on taking inmer products with a
suitable complete set of functions in the y variables (cf. Chapter 2 and

Refo 31) .

For the factorization relations, we start with the trivial identity

‘b:: (@) 9.0
ool _ * o -
U [T > = Jdg (T(D) ¢5(D)) e (7.1-9)

and substituting in Eq. 7.1-7, we obtain the factorization relations
(36)

+ * +
| le> = 121 A Qr Iﬁ)lMOM <u|1” >

* — + —
+§! 'Jd_l(; TN ]MoamE <K F|T" [M> (7.1-10)
where
b D by (D (D
: o0t I3 = [¢] _
A" M) ]MOM [ dr =D + cCT (7.1-11)

and
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%*
A [ [ d e 30 ¢M°(£) g + CCT (7.1~12)
[= IM)MO,II.K; - I ir q’ﬁ(f) s .

assuming M , M' and M are such that the integrals converge at infinity.
Here [' dr indicates that the integral with singularities associated
with the zeros of cp-ﬁ(g_) has been regularized (cf. Chapter 2 and Ref. 31).
The CCT term indicates the relations Eq. 7.1-10 are invariant under the
addition of suitable linear combinations of consistency conditions (as-
suming ES data is used as input).

We now consider the question of convergence of the factorization
matrix integrals at infinity. As a simple example, we consider a col-
linear atom-oscillator system where the oscillator potential corresponds
to a finite depth well and V(x) + 0 as the internal stretch coordinate

x > @ (e.g., a Morse oscillator). From an asymptotic (WKB) (61) amalysis

X
00O ~ e - 1 | ax /AT = )

.

~ exp (-1/& /ZuIENI X) as x> (7.1-13)

where EN < 0 is the energy of the Nth excited state and U is the reduced

mass. Thus

¢M (X) ¢MQ(X) ‘/__ .
: = e B 2 ()% - 1gy % - Imy B (7.1-14)
o

ag x > ®



159

so we require that IEﬁI% - |Ey |35 - IEM'IAE < 0 for convergence of all
the integrals in Egqs. 7.1-11 agd 7.1-12 at x = ©. We may show this
criterion for convergence applies to all systems where the molecular
binding potential V(r) + 0 as r + ». If this constraint is not met,
the divergences encountered cannot be regularized as were those cor-
responding to zeros of ¢y(r) for r # @. Such restrictions on the ramge
of the factorization relations is a feature not seen in the nonreactive

case. A few regimes where this convergence condition is satisfied are

listed below:

a) if M, M' and M are all deep tightly bound states so EMo X
EM' x Eﬁ'

b) if E, or E, < Eg This includes downward pfediction
(EM' ;.Eﬁ).

c) for higher but sufficiently closely packed states with EM ’
EM' > Eﬁ (slightly upward prediction). °

A similar treatment to that described above shows that

2 £ o 5 * =
<@ K F|T"|M'> = ] [A (M'Im]m R M M| T >
M oo

+3 J CEINCU I < of 7= (7.1-15)
m oo’ —

where expressions for the matrix elements are obtained from those in Eqs.

. Fk
7.1-11 and 7.1-12 by replacing ¢; (r) with ¢; K (x). For comvergence at
o oo
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infinjty, in this case, we cannot predict upwards (i.e., we require
EM' < E—M). In particular, ground state M= 0) factorization relations
cannot be used.

Properties of the factorization matrix analogous to those described

in Chapter 2 and Ref. 31 also apply here. Specifically (36),

[éi(n' lﬁ)m- = Sy (7.1-16)
s or rﬁ)m,ﬁ =0 . (7.1-17)
+ + — + [

A(M M) AT(M'[M) = AT(M"|M) + cCT (7.1-18)

vhere the "matrix" multiplication includes sum and integral parts and

for Cauchy principal value integral choice of regularization

AW =1. (7.1-19)

Again, if the T-matrix elements predicted in Egs. l7.1-10 and 7.1-15
are on-shell by virtue of a suitable choice of relative state labels, then
those input elements are in general half-off-shell (see Chapter 8 and
Ref. 34).

In concluding this section, we make some general remarks on the
factorization relations (36) which are also applicable to the exact fac-
torization considered in the next chapter. We anticipate that the
presence of the dissociation continuum should have little effect on the
consistency conditions for state M and the factorization relations pre-

dicting bound state to bound state transitions associated with the states
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M, M and M when these states are all tightly bound, i.e., deep in
the well. Specifically, under such conditions, Eqs. 7.1-8 and 7.1-10
should, as a consequence of the smallness of <n§::|Ti r}_?-, effectively
reduced to the corresponding ES relations in Chapter 2 where dissocia-
tion is excluded (31). This simplification has been implicitly utilized
in all previous calculations involving finite depth well (sﬁecifically
Morse-oscillator) potentials (30, 66). The effect of the dissociation
continuum will be more significant for states higher in the well.
Finally, we note that‘the treatment given here may be readily
extended to the case where both collision part:ﬁers may undergo dissocia-
tion. For such, more complex systems, the ES approximation is less

likely to be satisfied.

7.2. Vibrational Enhancement/Inhibition for the

Collinear CID of an Atom-Truncated Square Well Diatomic Oscillator

The collinear model is widely used in various classical, semi-
classical and quantal studies of the CID process (83-91). One important
aspect of the CID studies concerns the role of vibrational enhancement
or inhibition, i.e., increase or decrease of the total CID probability
(i.e., of transition from a given state to all possible dissociative
channels) with the increase of the initial vibration state at fixed
collision energy. In general, studies for truncated harmonic oscillators
and more realistic oscillator binding potentials with exponentially re-

pulsive interaction potentials show vibrational enhancement near dy-
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namical threshold for dissociation and inhibition at higher collision
energy. When the interaction potential becomes more impulsive, the
dynamical threshold is lowered and the region of vibrational inhibition
moves to lower collision energy (85). This explains why only inhibi-
tion is observed in the study by Ford et al. (87) in their truncated
square well oscillator with impulsive interaction study.

In this section, we consider the collinear collision of an atom-
truncated square well diatomic oscillator in the ES approximation. We
show now, once the spectroscopic factorization relation matrix elements
are evaluated, under certain assumptions on the behavior of the T-matrix
elements, we can predict vibrational enhancement/inhibition in specific

dissociative channels without any dynamic calculation of the tramsition

probabilities.

7.2.1. Model and eigenfunctions of the oscillator

Let U be the reduced mass of the diatom BC and x the internuclear

separation of BC. The binding potential V(x) is given by (see Fig. 7.1)

V(x) == x<0
V(x) = -Vo 0<x<a (7.2-1)
VW(x) =0 xX>a.

From now on, the vibrational quantum numbers of the bound states
will be labeled by m and the continuum state labels by k. Various choice
of m and k will be distinguished by primes, overbars, subscript zeros, etc.

The bound state (with internal energy E < 0) wave functions have the form
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Y= -

-v

x=0 X

0
[+

Fig. 7.1. Binding potential of diatom BC

0 x<0
¢m(x) =< 4 sin q % 0<x<a (7.2-2)
D e—me X > a
m 2
vhere
q, = 2u (v - IEmI)/"rrz);5
= 2,3
p, = (@u [E_| &%)
(7.2-3)
Dm =4 P gin q2
1 i.,1 1 1 2
— =% (— (q a -3 sin 2q_ a) + — sin" q a),
Amz 2 qm qm 2 qm . pm qm

and the eigenvalues E!n are determined by the relatiom
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cot q a = - pm/qm. (7.2-4)

Here, 9, and p, are the wave numbers of the m th bound state inside and
outside the potential well, respectively.

The continuum state (with internal energy EE > 0) wave functions

have the form

0 x<0
¢;(x) = A; sin q x 0<x<a (7.2-5)
(_‘27) sin (p x + §,) x>a
where
= (Cum’) @& +v )%
B = (Qui) ED*

(7.2-6)

o

(— tan qk - pa

c= 23is:i.n(pka+(5)
11) si.nqk

and Q> Py are the wave n\;lnber of continuum state k inside and outside
the well, respectively and Gk is the phase shift. For large EE, we have
P, = 9 and hence, 6‘ = 0 and Ak x (%);5. The continuum state wave func-
tions are normalized im a Dirac-delta fashion (87, 92). Note that be-
cause this is a one-dimensional problem with an infinite barrier at x =

0, there do not exist separate incoming and outgoing continuums state

(cf. the F labels in Eq. 7.1-5).
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7.2.2. Evaluation of the factorization matrix elemeants

The bound' state wave functions ¢-1;(x) are labeled by a single vi-
brational quantum number m which also gives the number of nodes in the
wave functions. Frém Eq. 7.2-2, all the nodes are simple zeros and are
inside the potential well. The consistency conditions on the T-matrix
elements derived from tramsition out of bound state m are (36)

— i - i
} <alt/> 4,6 + [ ap, <lzlE 46D = o, (7.2-7)
m

where :% is the ith zero of d);(x). The factorization relations predict-

ing the bound state to continuum state T-matrix elements are (36)

<k°lTlm'> =} [A(m' l;)],k o <a|T[m> + J dp, [A(m' l;)]k k <k|T|w>,
m o o

(7.2-8)
where m > m',
6 (®) ¢ (D ¢,
[A(m' IE) ]k = IBSBS - fa . J’Q ix m o(x) m
o o 0 a ¢;1
- -BsBs BsBs
= I + I (7.2-9)
and
¢ (x ¢k (x) ¢ _+(x)
laGa’ [@) 1y o = 7% = ( )d" =6
o
= IzsCs + 550 (7.2-10)
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Here,v BsBs (BsCs) stands for bound state to bound state (continuum state)

and label i(o) means inside (outside) the potential well. Cauchy prin-

cipal value integrals are used to regularize the integrals IESBS

II;.sCs having singularities associated with the zeros of ¢;(x) . Evalua-

and

tion of these integrals is now outlined:

(D) IBsBs and 1BsCs
o o

IgSBs is given by

SBs _ 452 W m e .
Ii == ( e 5 2 [csm(pka+6k)
m c¢. + Py o o
()
- pk cos (Pk a+ Gk )] (7-2"11)
o o o
where

c = Pl_n - pm' - pm <0. (7.2-12)

In general, the value of I?;SBS is small unless both |c| and

P are small.
o

1250 is given by

IBsCs_ 1Dm' ca A B
=-7 e +

2 2 2 2
(o] (o]

(7.2-13)
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where
= - <
¢ = Pg = Py 0
A=

c:os(<Sk - Gko) {c cos [(pk - pko)a] + (pk - pko) sin [(pk - pko)a]}

- sin(§, - Gko) {c sin[(p, ~ pko) al - (p, - pko) cos[(p, - pko)a]}

B =-cos(§, -4, ) {c cos[(p, +p, )al+(p, +p, ) sinl(p, +p, )al}
o o o °
+sin(6k+ Gko) {c sin[(pk+pk°)a] - (pk+pk°) COS[(Pk.‘*'Pko)a]}-

(7.2-14)

In general, the value of Iﬁscs is small unless P *P

Xk and Icl
°

is small.

" (2) I§SBS and IgsCs

We now consider the integrals inside the well. In the ex-

pression
c.,c
Bsce Ak Ako Am' a sin qu sin qkox sin q_m,x
I = dx ,
i A—m o sin gx

(7.2-15)
we make the replacement
sin q x sin qk'ox sin q X = sin le+sin sz-sm Q3x-sin 524,



168

(7.2-17)

2, " %~ % " %
o

Q4=qk+qk°+qm"

) c
By replacing Ak and 9 in the above equations with Am and Q>
respectively, we obtain expressions for I?_SBS.

To determine I?.SCS/I iBsBs, we have to evaluate Cauchy

principal value integrals of the form

a 27 . =
][ dx :—i-i:%-’i -2 )( o Sin 98 (7.2-18)
0 * 0 sin A8
) ~ _a 5. .2
where A = ) A= EA and Q = -5-1;9 . The Cauchy principal value
integral in Eq. 7.2-18 can be evaluated numerically using
quadrature (93) or analytically using contour integration. We
consider only the latter method which elucidates the behavior
of I?_SCS/I:sBS as a function of P -

Let

z=e", (7.2-19)
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Eq. 7.2-18 can be rewritten in the form

_ia_ Im E“de cos R0+ ‘i iin Q0 = -
m sin A

ER[Y

Im sz dz — (7.2-20)
0 Ce 1-2

where C€ is obtained from the unit circle, centered at the origin, by

removing arcs of length € centered at each pole

zj = e:"ej
(7.2-21)
6; = ju/A, 5 =1, «ou, m.
From the residue theorem (94), Eq. 7.2-20 may be written
a -1
-5 Im 2im f dz =————
>0 C. 1--z2A
m QFA-1
=--§Im[m’.2R(zj)- I"‘I "’J( dz £——1,
=1 c, ‘., 1-,28
(7.2-22)
where
ok
R(z)) = - e (7.2-23)
2A

is the residue at the pole zj. The contours referred to are shown in

Fig. 7-2.
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Fig. 7.2. Contour for the integral (7.2-19) with m=2

' We have chosen the branch cut for the multi-valued functions in the
integral of Eq. 7.2-20 along the positive real axis.

If

Q+2>0 ' ' (7.2-24)

the integral on Co vanishes as LA tends to zero for every §. Since

A > 0, this motivates choosing

>0 ’ (7.2-25)
(which is always possible using sin (Q0) = - sin(-Q0)).
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xei(Zm-S)

The integral on C_, where z = and as § approaches zero,

may be evaluated using (95)

a L1 a 1 ewr('si% x@-K-l
?Imzimf dz _=—'1-rIdex =
&0 ‘c_ 1-,28 1 - Ql4m 2B
(-] —— o—— ———
-_2 ) sin 2m (SHM24R2) _ 1 (7.2-26)
T =0  (Qvd+2A0)

which is a weakly converging series. However, from a computational
point of view, it is better to evaluate the integral directly numerical-
ly. 1In order to minimize the error in using the Gauss—;egendre quadra-
ture, again the choice Eq. 7.2-25 is desirable since it excludes the
possibility that A+Q~ 0, where the integrand behaves like 1/x near
the origin. Note that for large Q and Z, the value of the integral is
small.

Now consider the integral on C+, where z = xeis. So

[--] — - <] —
2 Im I dz — - % Z iig 2ﬁ62 - i z ) s:f- 2A8% oRS
C zZA 2=0 Q+A+2A8 2AT 2=0 2A82%

fiaa'] _a_ s sin 5 _ _a___ I (7.2-27)
2AT s 4A

which is small for large A.

Combining Eqs. 7.2-18, 7.2-20, 7.2-22, 7.2-26 and 7.2-27, we have
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cos [(Q - q;) ] +I + I (7.2-28)

IIMBI

}a g S50 = _ T
0o St 9y
for >0,
and the j summation arises from residue at each pole, Adding up contribu-
tions from the four terms in Eq. 7.2-16, it follows that the inside-the-

well contribution of the BsCs integral is given by

I?scs =R+ J +J°, (7.2-29)

where R, J and fl' are the contributions from the residues, the inte-

grals on contour C_ and C '+ respectively; R, J and J+ are given by

'lTAkAk A ' m 3w
R=__4_E;T-_ Z {sgn (1) cos [(]Qll-q;) ‘l'ﬁ]

+sgn (2) cos (|- %} - sgn (3) cos [(|2,]-a2) 4T

™
- cos [(|Q,]- )_j_‘r_r_]} . (7.2-30)
4 q; o
c ,c
MR _ _ L
J = Y A; [sgq (1 Il + sgn (2) 12 - sgn (3) 13 - I“]’ (7.2-31)
c .,c
TR Ay
J = 3 A; = Isgn (1) + sgn (2) - sgn (3) - 1]. (7.2-32)
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We now consider the behavior of [A(m' l;) ]kok’ i.e., IBSCS (= IBscs

i
+ Igscs), in Eq. 7.2-10 as a function of k. In gemeral, I(B)sCs is very

small, except in the region around k = ko. Next, we consider the be-

havior of I?_scs. In general for the systems that will be considered,
J~ contribution to I?sCs is small. The behavior of J+ and R contribu-
Bs

tions to I Cs for different regions of k are amnalyzed below:

i
First, consider the region of k such that G <G < Qe From Eq.
[¢]

7.2-17, we have

sgn (1) = -1, sgn (2) = +1 and sgn (3) = -1. (7.2-33)
Using these relatioms, J+ =0 and
m Al(: Ali Am' n .
R= -—-q—;—z—;— jZI (-1)J+1 sin(j'rquo/q;) cos(jﬂqm./q;) sin(jqu/q;)-

(7.2-34)
Next, for the k values such that Q. = Qe < qk <q + Q> Ve
o (]

have
sgn (1) = +1, sgn (2) = +1 and sgn (3) = -1. (7.2-35)

From these, we have

[ [
+ 3“AkAk° ' (7.2-36)
3 o
8 & ap

which is typically small (see Sec. 7.2-3) and
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(2]
N

T A Ay

R = Z‘IEA;

n MBI

-1)j {cos [37(q, —qm.)/q;] cos (J’ﬂqkld;n)
o]

+ sin [im(q, +q ,)/qz] sin (jmq /o) 1.
(¢]
(7.2-37)
Finally, for the k values, such that 9 > Y + Qs (the asymptotic
(¢]

region),

sgn (1) =sgn (2) =sgn (3) = 1. (7.2-38)

Hence, we have J+ =0 and

=3
"o
= o
g
0 ~1H |

o h| . . .
(-1)° sin(jmq, /q=) sin(jmq_,/q7) cos(jnq,/q).
e i k, T U /G €08 T/ I

Note that, for large k and k, Ak and Ak in the above equations can be

approximated by (ﬂ) (see discussion immediately following Eq. 7.2-6).
Next, we compare the CCT terms in the factorization matrix elements

and R in Eq. 7.2-39. The CCT terms arise from the comsistency conditions

of Eq. 7.2-7 and are in the form

m m'k
BsBs _ ()
ccT = jzlcﬁ (3) 4, sin (§7q /o) (7.2-40)
n'k ,
cer®*® = Z c2 °) Al‘z sin (jnqk/q;) (7.2-41)

j=1
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where CC 8Cs (CC!.'B sBs) is associated with the BsCs (BsBs) factorization
— — m'k
matrix element [A(m' [m) ]k x ([A(m' Im) ]k ln). The constants C; °(j),
o _ o
which may depend on m', ko, m and j, are arbitrary. Note R and CCTBSGs
both have sine function form w.r.t. 9 in the region 9 < qko = Qe but
have different (cosine cf. sine) form in the regions G — 9 <9 <
o

()
consequently, I?_SCS or IBS€S since R is the dominant term) in the re-

9 + Qe and q > qko + Qe Thus, it is possible to cancel R (and

gion 9 < QG " Yy using the freedom of the arbitrary constants
o

' t
C; k0(j). The appropriate choice of G:%ko(j) is

3 c
m'ko (-l) ™ Ako Am' . ‘ .
CE () = < & sin (jquo/q;) cos (J'rrq_m./q;). (7.2-42)

We now consider a special case when 9 is an integral multiple of
» ()

. In this "commensurate" case sin q X can be written in the form
°

sin q x= sin n = = sin o= f(qax), (7.2-43)
()

when n is the integral multiple and f(qax) is a linear combination of
sine and cosine functions with arguments n q;x, where 0 < m < k (see

Appendix F). Using Eq. 7.2-43, Eq. 7.2-15 becomes

c ,C
aCs AkAk Am' a '
e . o = j &x (sin q_,x + £(gz0) sin q,x, (7.2-46)
m 0 .

X ' Cs
and since sin CIRES f(qm.x) is regular, I:S = 0(1/qk) as q *® from

the Riemann-lebesque lemma (96). Thus periodic structure, like that
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described in Eq. 7.2-39, does not appear, but complicated structure
may appear in the region 9y < K, (see Appendix F).

So far, we have considered exclusively IisCs’ but similar treatment

BsBs
of I i

c

follows after replacing Py with P> 9 with q and Ak with Am.
A different use of the CCT terms could eliminate all the transitions

m' > m with m in the region q, < U, = U in the input data (achieving

a form of the factorization relations analogous to those in the matrix

-approach).

7.2.3. Numerical results: factorization matrix element_:s

The parameters for the two physical systems, TSWI and TSW IT are
given in Table 7.1. All quantities are given in atomic units (a.u.).
System TSW I has been considered by Ford et al. (87) to model the diatom
Hz. System TSW ITis used to model the diatom HI. The energies Em and
the wave nunbers inside and outside the well, 9, and Py of the bound
states m for both systems are given in Table 7.2 and 7.3. The TSWI (II)
system has five (twenty) bound states.

Sample numerical factorization matrix elements [A(m'|m) | . (= IBSBS)
o

Table 7.1. Parameters for TSW I and TSW II systems in a.u.

Parameter TSW 1 TSW 11
H ' 918.75 1822.6765
a 2.94 3.0313

v 0.0156 0.1175
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Table 7.2. Bound state energy levels Em and wave numbers 9. P of
system TSW I in a.u.

n En I P

0 -0.01505 1.0044 5.2589
1 -0.01341 2.0065 . 4.9638
2 -0.01069 3.0032 4.4324
3 -0.006943 3.9884 3.5718
4 -0.002304 4.9427 2.0577

Table 7.3. Bound state energy levels Em and wave numbers 90 Py of
system TSW II in a.u.

= Ey % Py
0 -0.1172 . 1.0201 20.6738
1 -0.1164 2.0402 20.5982
2 -0.1150 3.0602 20.4715
3 -0.1130 4.0801 - 20.2929
4 -0.1104 5.0998 20.0609
5 -0.1073 6.1193 19.7738
6 -0.1036 7.1385 19.4291
7 -0.09928 8.1574 19.0238
8 -0.09444 9.1759 18.5540
9 -0.08903 10.1939 18.0147
10 -0.08305 11.2114 17..3998
11 -0.07651 12.2281 16.7009
12 -0.06942 13.2439 15.9074
13 -0.06176 14.2586 15.0046
14 -0.05355 15.2720 13.9719
15 -0.04480 - 16.2834 12.7788
16 -0.03550 17.2923 ' 11.3765
17 -0.02569 18.2972 9.6779
18 -0.01540 19.2952 7.4927
19 -0.004752 20.2762 4.1620
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and [A(m' [m) ]k k (= IBSCS) required in predicting <k l'l"lm'> using the
transitions out of m are presented in Table 7.4 and Fig. 7.3, respective-
ly. Here, TSW II is used as illustration and pk = 48 a.u. (qk =
52.27 a.u.), By, = 0.6320 a.u. (compared to the well depth of 0. 1175),
m = 16 and m' = 15. In Table 7.4, inside and outside the well contribu-
tions, I§SBS and IBSBS, to IBSBS are given in the first and the second
colum. The values of II','SBs are significant only for m = 14, 15, 17
18 and these roughly sum to zero. Also for these m wvalues, ‘I];SBS con-
. tributes most in IBSBS. From Fig. 7.3, the major contribution to IBSC's
comes from the residues R and the contributions from Il;sCs and J* (in-
tegrals on contour C+ in Fig. 7.2) are important only in the region
around P ~ pko. The behavior of the J' - Py plot can be readily ex-
plained using the analyéis given in the last section. In the R-pk plot
(or IBSCS - Py plot), when Py > 70 a.u., the periodic structures de-
scribed by Eq. 7.2-39 are clearly shown. They are highly localized and
the area under each of these structures is zero. (The latter follows
readily from Eq. 7.2-39 after replacing A; with (%);5.) The structure
around P ~ pko is described by Eq.. 7.2-37. The area of the correspond-
ing structure in the IBscs - P plot is no longer zero and it is about
1. In this particular example, no structure shows up in the region
9 < q-ko - qm' in the P Plot.

Next, we examine numerical results for the commensurate case.

Sample results of [A(m'|m) o & IBSBS) for different m and [A(n'|m) Tkok
o



Table 7.4.2 The BsBs factorization matrix elements [A(m' m) Ik ot (= IBSBS

= I?sBs
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+ IgsBs) for various m in TSW II with P = 48 a.u.,
m= 16 and m' = 15

[+

n I'gsBs IBsBs IBsBs
o

0 3.4844 (-4) -3.3929 (-4) 9.1506 (-6)
1 -6.9827 (-4) 6.7778 (-4) -2.0489 (-5)
2 1.0512 (-3) -1.0146 (-3) 3.6582 (-5)
3 -1.4098 (-3) 1.3489 (-2) -6.0858 (-5)
4 1.7781 (-3) -1.6798 (-3) 9.8354 (-5)
5 -2.1630 (-3) 2.0060 (~-3) -1.5700 (-4)
6 2.5765 (-3) -2.3265 (-3) 2.5002 (-4)
7 -3.0404 (~3) 2.6396 (-3) -4.0078 (-4)
8 3.5970 (-3) -2.9438 (-3) 6.5325 (-4)
9 -4.3337 (-3) 3.2367 (-3) -1.0970 (-3)
10 5.4495 (-3) -3.5159 (-3) 1.9336 (-3)
11 -7.4633 (-3) 3.7780 (-3) ~3.6852 (-3)
12 1.2033 (-2) -4.0187 (-3) 8.0141 (-3)
13 -2.6659 (-2) 4.2323 (-3) -2.2426 (-2)
14 1.2845 (-1) -4.4108 (-3) 1.2404 (-1)
15 7.8669 (-1) 4.5430 (-3) 7.9123 (-1)
16 , 0.0000

17 -7.9340 (-1) 4.5848 (-3) -7.8882 (-1)
18 -1.2872 (-1) -4.4001 (-3) -1.3312 (-1)
19 2.3684 (-2) 3.8378 (-3) 2.7522 (-2)

3The integers in the parentheses refer to the powers of 10 asso-
ciated with each number.

Same notations are used in Tables 7.5-7.



0.5+ _ ‘
R 0.0« "
"005- ’_.
3
0.5¢
IBSCS 0.0 2 4 ‘v A ‘v-' -
"'0-5‘
o

v L L | \J | J v
0 40 80 120 160

(a.u.)

T

Fig. 7.3. The variation of IBSCs,and its components as a function of Py ? for pk =
48 a.u. (Ek = 0,6320 a.u,), m= 16 and m' = 15 in TSW II o
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= BBC"”) for different k are presented in Table 7.5 and Fig. 7.4 for the
case qko = 2 q; Results for qko =3 s 4 q are given in Table 7.6,
Fig. 7.5 and Table 7.7, Fig. 7.6, respectively. Here, TSW I is used as
illustration. As in the noncommensurate case, the major contribution
of the value of f.he matrix elements comes from the integral inside the
well. The variation of IBsCs as a function of Py is predicted by the
analysis given in the last section and in Appendix F. In the asymptotic
region, IgsCs and Ig'sCs almost cancel each otherf Finally, we mention
that the maximum value of IBsCs for the structure around Py ~ pko occurs
at py slightly less than Pk

Finally, in Fig. 7.7, we present a series of IB sCs

- Py plots for
fixed qkolqi (here, 2.75, i.e., noncommensurate) andm=14 - 19, o' =

m - 1. System TSW II is used. Except in the region 1% < 10 a.u., the
plots in the series are very similar. The similarity can be rationalized
using the following reasoning. Consider the structures in the asymptotic
region Qe >q + qa, (see last section). Here, IBSCs is due mainly to R

and from Eq. 7.2-39 it is given by

Ant
o)

IBs Cs _2_
@ AT

xR=

uMBl

[(-1)5 sin(2.75 §m sin(imq /)] cos(ina, /o),
(7.2-45)

where Ak 2 Ako = (%_)’5 has been used in the above relation. In Table
7.8, numerical values of various Am' /A; and qm./q; ratios are listed.

The ratios are fairly constant. From this, we can conclude that the fac~
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— BsBs
Table 7.5. The BsBs factorization matrix elements [A(m'|m) ]kom =1I
for various m, for the commensurate case qk = 2q1—n, m=3
andm' =210 TSW I °
o IBs:Bs Il?.sBs IBsBs
i o
0 -1.0187 8.689 (-3) -1.0100
1 4.0669 (-2) -1.7445 (-2) 2.3224 (-2)
2 ~3.6200 (-2) 2.6197 (-2) -1.0003 (~2)
3 0.0
4 -1.4391 (-2) 3.6945 (-2) 2.2554 (=2)
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I‘I;SCS = [A(m' [m) ]kok) as a_function of p,, for com-
mensurate case q = Zq, m=3andm' =2 din TSW I
o
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Table 7.6. The BsBs factorization matrix elements [A(m' IE) Ik ot (= IBSBS)
3

for various m, for the commensurate case 4 = 3qﬁ, m=
and m' = 2 in TSW I o '

n I‘.BsBs IBsB's IBsBs

i . o
0 -5.8885 (-3) 7.3621 (-3) 1.4736 (-3)
1 1.1874 (-2) -1.4836 (-2) -2.9612 (-3)
2 9.1919 (-1) 2.2495 (-2) 9.4169 (-1
3 ' 0.0

4 - =9.5101 (-1) 3.6788 (-2) -9.1422 (-1)
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Fig. 7.5. The variation of ICB,SCS, Iiscs

(= [A(m'lﬁb]kok) as a function of P> for commensurate
caseqko=3q;,5=3andm'=21n:rsw1

and IBsCs
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Table 7.7. The BsCs factorization matrix elements [A(m'|m) Jkm (= T °sBs
for various m, for the commensurate case qk = Aqﬁ, m= 3
and m' = 2 in TSW I

)

a IgsBs IgsBs IBsBs

0 -9.6313 (-1) 4.6387 (-3) -9.5849 (-1)
1 3.1041 (-2) -9.4181 (-3) 2.1623 (-2)
2 -2.3555 (-2) 1.4486 (-2) -9.0689 (-3)
3 ' 0.0

4 - -5.5893 (-3) 2.5718 (-2) 2.0129 (-2)
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Table 7.8. gyxlrical values of various Am'/Aﬁ and qm./q_E ratios in

n'/m A1'11' /A'n'l Uyt lq;
13/14 1.001 0.934
14/15 1.001 0.938
15/16 1.002 0.942
16/17 1.002 0.945
17/18 1.005 0.948
18/19 1.017 0.952

tor inside the square bracket on the r.h.s. of Eq. 7.2-45, is fairly
constant for m'/m ranged from 13/14 to 18/19. Going from m'/m = 13/14
to 14/15, one more term is added to the j sum. This new term is rela-
tively small compared to the original sum of fourteen terms. Hence, the
m'/m = 14/15 plot is qualitatively similar to the 13/14 plot except for
the increase in the period of the structure. The change in the period
is due to the change in o in cos (j'nqk/q;n-). Same argument can be used
when one goes from m'/m = 14/15 to 15/16 and so on. If we fix the ratio
of 9 and Qs results similar to those given in Fig. 7.7 are also ob-
taine:;.

Throughout this series, the structures beyond Pk, ~Pikq have zero
area and those at Py ~ pko have area ~1. Those in the region pk < 10 a.u.
have area <<1 with the exception of the case =o/m' = 15/14. Here, however,

the area is "cancelled" by the BsBs elements.
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7.2.4. Numerical results: prediction of vibrational

enhancement /inhibition

We now turn to the question of predicting vibrational enmhancement/in-
hibition in specific dissociative channels and, in particular, we will
examine the ratio <k°|T|m'>/<k°lT|m'+1>, for various continuum states
k.o. If the ratio is greater (less) than one, we have vibrational inhibi-
tion (enhancement).

When the input and predicted initial bound state are the same,

[a@' [, = & d [A(' |w') Jg n = 0. Thus, vhen m = m' + 1, and
there are many bound states, we might expect that the major contribution

to
<k _|T|n'> = J dp [é(m']m‘+1)]kok <k|T|m'+1> + ... (7.2-46)

comes from those k clqse to ko and the BsBs contribution to be rela-
tively unimportant. In Eq. 7.2-46, the contribution from the BsBs input
T-matrix elements is not shown explicitly.
Below we make some observations and assumptions pertinent to the
development of the above ideas:
(i) Studies show that relative kinetic emergies of several times
the well depth are often sufficient to guarantee diséociation
(87-88) (i.e., the total probability of dissociation is ~1).
(ii) We consider here the relative kinetic energies are such that
(1) is satisfied and also the collision is "sudden".

(i11) For such a choice, we suppose an initial bound state m' + 1
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and final dissociative state ko can be chosen such that

(a) <ko|T|m'+1> dominates <n|T|m'+1> for all bound states n.
(Here, ko, is such that <k,|T|m'> is on-shell, but we sup-
pose that the <ko|T|m'+1> roughly equals the corresponding
on-shell quantity obtained by modifying the final pro-
jectile-diatom fragment relative momentum.)

(b) We suppose that <k|T|m'+1> does not vary much oxer the
width of one of the "ringing structures” in 1Bs (pk) but
also require <k|T|m'+1> becomes zero before a "large
number" of these structures are crossed. The latter is
reasonable since the period of these structures is basical-
ly determined by the well depth (but is smaller for low
lying bound states). The maximum k for nonzero on-shell
<k|T|m'+1> is bounded by enmergy conservation restraints;
the off-shell quantity <k|T|m'+1> is expected to be rough-
ly zero for k above the k¥ maximum.

(iv) The: above assumptions imply that

(v)

<k |T|n'> = A(k ) <k_|T|m'+1> (7.2-47)
where A(k,) is the area of the structure at Py ~ P, in the
IBSCS - P plot. BHere, we have used the fact that :he other
structures do not contribute significantly due to their approxi-
mate zero area- *md assumption (iii)(b). In fact, since these
structures are even, at least for p, ~ pko', even linear
<k|T|m'+1> behavior will not contribute to Eq. 7.2-46.

A convenient procedure for separating the contributing main
peak at pk' ~ pko from mixed in zero- area structure and for
determining the corresponding A(ko) is illustrated in Fig. 7.8.
The basic idea is to simply subtract the zero area asymptotic
residue contribution (Asym R) from IBSCS. (Actually, Asym R
only has zero area as a function of qk; plotted against Py

only the left-most structure has a small nonzero area, ~0.003.)
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Procedure to determine A(k ).
1)k = 65 a.u. for TSW II

Here m = 16, m' = 15 and
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A "nice" sharp main peak of width Ap = 2.6 a.u. centered at

P =64 a.u. (cf. p, = 65 a.u.) results. Finally, note that

[+]
the area of the structure to the left of the main peak at pk
BsCs

in the T°%° and 1% - Asym R plots is less than 2% of
A(pk ).
(vi) 1t is important to note that our determination of A(pk ) is
essentially independent of the choice of CCT since these
all have (roughly) zero area, particularly in the region a-
round and beyond the main peak.

Using the above procedure and Simpson-three-eights rule (93) with
a stepsize of 0.1 a.u., A(ko) is determined numerically every 2.5 a.u.
for pko ranged from 40 a.u. to 135 a.u. The peak width Ap starts at
2.8 a.u. and levels off to 2.6 a.u. when Py, 2 70 a.u. The variation of
A(pko) as a function of pko is. shown in Fig. 7.9 for m' = 15.

The results indicate that A(ko) oscillates (slightly) between 0.959
and 1.065 which means that <k|T|m'> should exhibit a corresponding
oscillation. This oscillation is in (roughly) on-shell T-matrix ele-
ments, i.e., not in the off-shell quantities appearing in Eq. 7.2-46
which we have assumed are "slowly varying."

The fluctuation is greater in the lower Pk, region, and it approacheé
to one in the higher Py region. This means the bound state vibrational
energy is not very infl?xential in the dissociation of the diatom with

high relative momentum of fragments.
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8. EXACT FACTORIZATION OF T-MATRICES

We have discussed factorization relations and consistency conditioms
in the sudden approximations, the BA, the DWBA and the DWES approxima-
tion for nonreactive collisions. In this chapter, we will briefly re-
view the exact factorization of Beard et al. (34), which is closely
related to the analytic approach factorization. The reduction of the
exact to the ES factorization is also discussed. The exact factoriza-
tion for dissociative collisions and the reduction to the ES result

given in the previous chapter are also discussed in this chapter (36).

8.1. Nonreactive Collisions

We follow closely the treatment of Beard et al. (34) in this sec-
tion. As usual, the internal coordinates and the relative coordinates
are denoted by r and R, respectively. In the coordinate representa-

tion, the asymptotic state eigenfunction is
TR = gy B = oy %4 ® | (8.1-1)

where M is the set of internal state quantum numbers and k is the vector
for the translational motion, ¢M(5-) is the internal state wave function
and X, (R) is a plane wave. Let w+Mk(£ R) be the scattering wave func-

tion corresponding to ¢M(£) Xk(p and
<z R[b> = ¥, (z B) (8.1-2)

be the bound state wave function for the composite system of two
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particles (molecules). Using the local nature of the interaction po-

tential V(r R), a set of consistency conditions follows after expanding
+ o= —
VER v @R =<«<R[T M (8.1-3)

in terms of a complete set of ¢Mk(£ R). Suppose that (xr, R) may be

decomposed as (x, y) such that w+1*—fi (x, y) is analytic in x at x = X

with an Nth order zero there, then the consistency conditions are

r - ged
D e an|TE B | 2o g = 0
M ox = ==,
forn=0, 2, ..., N~-1 (8.1-4)

(extending the result of Ref. 34), which may be reduced to an equivalent
family of independent linear relationships with constant coefficients
on taking inner products with a suitabie complete set of functions in
the y variable (cf. Chapter 2 and Ref. 31).

For the factorizétiron relations, we start with the trivial identi-

ty

Mk |T [M'K'>
M - .
¢; k& ¥

-[[@® e vew Ve =2

v

Iz
<
=
I
Can)
Iz

=

L
@

Iz

k=
(8.1-5)

and expand the factor in parentheses in terms of the complete set of

¢m(_1_:_ R), to obtain (34)
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+ + == = =
<Mk |T[MK> = l{{j dk [at k' M E)]Mo‘;‘o”“—‘ <Mk|T |M >

(8.1-6)
where
aforx ¥ ©1
= - — "M k ,Mk
kM
* %
: X (B () X ® by @© Vi @B
= J I dR dr = 2 — + CCT.
Vo3(x R
MEk== (8.1-7)

Here, fj‘ dR dr means that the integral, with singularities associated
with the zeros of IIJ"‘E E(E R), has been regularized and the CCT is asso-
ciated with the flexiﬂ;iity allove& by the consistency conditions (cf. .
Chapter 2). In Eq. 8.1-7, we assume that the fixed quantum states are
chosen such that the integrals converge at infinity. Both on-shell and
half-off-shell T-matrix elements are required as input in the above
factorization relations. The coefficients of the consistency condi-
tions and factorization relations are no longer spectroscopic, that is
they depend on the collision dynamics.

Properties of the factorizhtion matrix analogous to those de~

scribed in Chapter 2 and Ref. 31 also applied here. Specifically,

[AOrE M By 55 = Ser S&X), (8.1-8)

atorer k) Ao M D = Afoe'[H D + cer (8.1-9)
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and for Cauchy principal value integral choice of regularization

634

|II>+
1%

Mk =I. (8.1-10)

In the ES, factorization with input data derived from transitions
out of a given state is identical to factorization with input data de-
rived from transitions into the same given state. This is not true in
the exact factorization. To derive the consistency conditions of the
latter type of factorization, we expand q%?(g R) V(r R) in terms of
the complete set of complex conjugate full ;amiltonian eigenfunctions
which include the scattering wave functioms ‘P:I.k and the bound state wave
functions wb of the colliding molecules. Agai;, let (x, y) be the de-
composition such that ¢171 E(x, y) is analytic in x at x = X, with an Nth

order zero there, then the consistency conditioms are

n
[ e AR |25 v |
M 9x =] 'x=x
(]
—- P %
+) ME|V|b'>S|Z— ¢, =0 (8.1-11)
b oK b X=X :

o

forn=0,1, ..., N-1,

and the corresponding factorization relations are (34)

arw |tk - 7 [ @ Erae [E D) & & Mo
M

Mk ,Mk
oo’ =

B EDl, , , HEvi (8.1-12)
b 0—0,
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where

F ot W T
Bk Dy g
o0 =

: e E R b @B xr(B) gD
=II dR dr — — - + CCT
(B (o)

(8.1-13)

and

P IRATER
B0k’ ML, 4
o—0

. BED i EB Xt ® e ()
k 3

= J J dR dr * x - + CCT. |
B dy(d (8.1-14)

Again, we assume that the fixed quantum states are chosen such that the
integrals converge at infinity. The properties analogous to Egqs. 8.1-8

to 8.1-10 are also satisfied by the £+'s.

Using the fact that locality of T in the r-variables implies that

(see Appendix A)

e € B = @ 5B, (8.1-15)

it is very easy to reduce the exact factorization relations and consis-
tency conditions to the ES form. Since Eq. 8.1-15 implies that the

ES scattering wave function 1]% -E(E R) has nodes whenever ¢l—4(£) .has. At
these nodes, the comnsistency co:ditions of Eq. 8.1-4 reduce to the ES

form. If we choose E = k'and substitute Eq. 8.1-15 into Eq. 8.1-7, we
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have

Mk

(£ o0k [ D1y
o_o’

VG by (©) by (D
= o — -
I dr = 8(k-k ) + CCT (8.1-16)

and the factorization relation becomes

Mk |THM'>
o0 -

vy by @ by (D .
_ ) ML ?
= 124 I dr oD +ccT| <Mk [T7|MK'>

(8.1-17)

which is exactly in the amalytic approach ES form with the translational
states explicitly shown. The condition of identical initial kimetic
energy in the input and predicted T-matrix elements is first recognized
by DePristo et al. (30). The_corresponding reduction of Egqs. 8.1-11 to

8.1-14 can be readily shown using the fact that (34)

ot 11 (3! - -
[B 00k M, o =0 (8.1-18)
0—0

BOMCK' [H') = A" QUK [ . (8.1-19)
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8.2. Dissociative Collisions

As in the last chapter, we consider collisions between a non-
reactive projectile and a molecule which can undergo dissociation. Here,
we use the same notation defined before (i.e., in Chapter 7).

The exact factorization relations and consistency conditions fol-
low readily using the development of the last section. The potential V
in Eq. 8.1-3 is now the sum of all interactions between the projectile
and the molecule (i.e., Vi in Eq. 7.1-1). Using the locality nature of
Vi, a set of consistencyAcbnditicns follows after expanding Eq. 8.1-3
in terms of a complete set of eigenfunctions of Has (the Hamiltonian for
the separated projectile and molecule). Suppose that (r, R) may be de-
composed as (x, y) such that ¢§k(x,‘z) is analytié inx at x = X, and

has an Nth order zero there, then the consistency conditions are (36)

t—— 3"
%Jdg_m_k_]‘r IMPFthk l
X - x=x°

n .
+) J dK J dk @;g;lrilﬁE 3—5 Fix x l =0 (8.2-1)
m 9x ==

o

forn=0,1, ..., N - 1.

The corresponding factorization relations are (36)
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-+
<Mk |T[M'k'>
o—0 -

T i —
-1 & oDy, wED

k [A Mk .ok k TKFET M
m oo’ ==
(8.2-2)
where
i —
A0re' M By g
oo’ —
+
¢ ] ¢Mk(_£_1_0 ¢§k (EB) llii-k.(z-'. B)
=J J dR dr = °:° — + CCT (8.2-3)
VEEED

amd [AMK [ND lioko,mK k is obtained by replacing ¢ in Eq. 8.2-3

with ¢:K x We assume Mo, M', k', M and k are such that the integrals
converg: ;t infinity. The exact B-factorization relations and comsis-
tency conditions 'can be similarly derived. Relationships analogous to
Eqs. 8.1-8 — 8.1-10 are satisfied by the A and B matrices. As for non-
reactive collisions, the reduction of thé exact results to the ES form

can be easily shown using the fact that locality of the T-matrices in

the r-variables implies the factorized form of the scattering wave func-

tions (qu 8.1-]5)0
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9. CONCLUSION

In this dissertation, we have discussed the general state factoriza-
tion of molecular collision scattering information and applied the re-
sults to nonreactive and dissociative collision systems. There are still
many unresolved questions concerning factorization. They are summarized
as follows.

One important quéstion concerns the best choice ofv regularization of
the factorization matrix integral. For atom-diatom, degeneracy averaged
cross sections for rotational transitions, the matrix approach works
better than the Cauchy principal integral form of regularization. It is
interesting to inquire as to whether this is true in general or whether
there is another form of regularization which works even better. If true,
how is it generalized to other types of systems and degrees of freedom?
Anothe:j question concerns the number of consistency conditions in the
matrix and analytic approaches. Why the two approaches do not have the
same number of consistency conditions for the Type B matrix structure is
unclear.

In Chapter 5, we comment on the connection between the factoriza-
tion relations in the analytic and orthogonal approaches. Precisely,
what kind of regularization (i.e., the appropriate choice of CCT terms)
which connects the two approaches is also mot clear at this time.

In the dissociative problem, we only consider the numerical calcu-
lations on the collinear atom—truncated square well diatomic oscillator.

The next system we would like to study is the collinear atom—truncated
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Morse diatomic oscillator. We expect that the "ringing structure" of
the factorization matrix elements is not a unique feature of the trun-
cated square well potential bﬁt also appears in a general diatomic bind-
ing potential system. In Chapter 7, we also discussed using the CCT
term to remove "part" of the ringing structure. This brings us back to
the question of best choice of regularization and CCT terms.

Finally, throughout the dissertation, we approximated the input T-
matrix elements by on-shell quantities. Recent studies (97) indicate
that it is true half-off-shell nature of the input T-matrix elements

cannot be ignored. We would like to incorporate this effect into the

factorization relations in future studies.
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12. APPENDIX A. STATEMENTS ON THE ES,

DWES AND DWBA T-MATRICES

The following statements of the ES approximation are equivalent.

(1) The T operator is local in the internal coordinates, r.

(2) The T-matrix elements satisfy the linear spectrocopic fac-
torization relations and consistency conditions discussed in

Chapter 2.

(3) The scattering wave functions w;k'(g R) have the form
* _ bt l
U@ B = 40 T (B - (12.1)

Equivalence of (1) and (2) has been proved in Chapter 2. Here we
prove equivalence of (1) and (3). Finally, we establish that locality

in the distorted wave T-matrix implies locality in the full T-matrix.

The T-matrices defined in Eq. 1.3 satisfy

vlwfw = Ti[¢m‘> (12.2)

where |¢Mk> = |¢M>|¢k> 1f we assume locality of T in x in.Eq. 12.2,

+
then u’l-k(!- R) have the factorized form of Eq. 12.1 where

+ J g’ T_E’E' () <lk(g')
ck(glg) = N - (12.3)

Next, we show that wave functions having the factorized form of Eq.
+
12.1, together with Eq. 12.2, imply locality of T  in r. We substitute

Eq. 12.1 into Eq. 12.2, multiply by (b;(_a_:_“) and sum over M to obtain
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6(5"5") V(E_s_R_) Ci(f,lg) - I dB' Tr R,r"R' ¢k(3") . (12.4)

*
Then, after multiplying by ¢k(_g") and integrating over k we have that

" * on +

We now consider the DWBA and DWES T-matrices. The exact distorted

wave T'-matrix defined in Eq. 1.10 satisfies
v'lwi' >= T'ihp > (12.6)
M oMc” ?

and the distorted waves have the factorized form of Eq. 1.8.

+
Since in both the DWBA and DWES, T' are local in r, one immediately

: +
obtains the factorized form of i, (r R) (Eq. 12.1) where

. + +
. [ @y @ gae)
%(EIB) =- v (E’E) . (12.7)

This in turn implies locality of the full T.
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13. APPENDIX B. GAUSS-ASSOCIATED LEGENDRE INTEGRATION

AND GAUSS-JACOBI INTEGRATION

13.1. Gauss-Associated Legendre Integration

The associated Legendre function P;l(x) is a product of (1 - x2)m12
and a polynomial P( )(x) of degree j-m:
2 = (1 - D2 P . (13.1-1)

Using Eq. 13.1-1, for a given lml and the weight (1 < xz)m, we can de-
fine a sequence of polynomials {Pgm) (x)} which are orthogonal and in

which P§m) (x) is of exact degree i on (-1, +1):

P®, Py J ax (1 - ) P P

f o0 2 (om)t
1 Pitm Pietm = 2(itm) + 1 1! ik

(13.1-2)
From {Pim) (x)} we can define an orthonormal set {-Pim) (x)} and 7?‘) (%) is

given by
Pgm) (x)

?im) (x) = (13.1-3)

Jl ax (1 - 2)® [PS“)(:;)]2
-1
The zeros of -‘F(m) (x), {xi} are just the internal zeros of the correspond-

ing associated Legendre function - (x), which are real, simple and

distinct and lie in the interval (-1, 1). For a given m, we can define
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the Gauss-associated Legendre integration of order n:

1 ' n
I ax (- = ) Wi B(x,) , (13.1-4)

-1 =1 nm
where P(x) is a polynomial of degree less than or equal to 2n - 1 and the

i .
weights LA are given by

i _ kol 1
“om ~ * >(m)
(xi) Pn (xi)

o X =(m . (13.1-5)
n. Pn-l-l
where lci is the leading coefficient of -§§m) which can be taken as posi-
tive

=(m) _, i ‘ -
PV = kX + ..., k. > 0. (13.1-6)

To obtain Eq. 2.2-11, we make use of the Gauss-associated Legendre

integration. Using Eq. 13.1-1, Eq. 2.2-10 is written in the form

- i — |m! )z i zlm'llz (lm,l) i
Jj=|m

x <jm'|T|i'm'> = 0 (13.1-7)

th

For a given |m' I s let wi,m. be the i~ weights of the Gauss-assoclated

Legendre integration of order j' - |m'|. We multiply both sides of

Eq. 13.1-7 by

(3,10, - la'hel? |

2G, + [@pr | “i'w’ Q- &, oz

(xj lml)
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and sum on i using the Gauss-associated Legendre integration of preci-
sion 2(j' - |m'|) - 1, we obtain Eq. 2.2-11 after using Eq. 13.1-1.
Whenr m = 0, the Gauss-Associated Legendre integration considered

here reduces to the Gauss-Legendre integration (62).

13.2. Gauss-Jacobi Integration

L
(ntotptl) T (o+l) T (n+orl~6+1)) 2
8 20+8+1 T (n+o41) T (n+B+1)

X P(a )(x)} forms an orthonormal set with respect to the weight

A sequence of Jacobi polynomials {(
B . . (a,8)
(1 - 2%+ 0" in the interval (-1, 1). The zeros of P (%), {xi}
are real, distinct, simple and lie in the interval (-1, 1). For a given
o and B, we can define the Gauss-Jacobi integration of order n:

1
J ax (1 - % @ + x)B P(x) = Z W as P(x,), (13.2-1)
-1 i=1

where P(x) is a polynomial of degree less than or equal to 2n - 1 and
the weights w;aB are given by formula analogous to Eq. 13.1-5.
To obtain Eq. 2.2-25, we make use of the Gauss-Jacobi integration.

Let ¢ = k' - m', B=%k'" + m' and let W, be the ith weight of the

j 'k'm'
Gauss—-Jacobi integration of order j' — k' for a given o and B. We multi-

ply both sides of Eq. 2.2-~24 by

%

[3,1G kD G |
22k'~l-l

-B/2 i -a/2
(1- xj lk'm|)

1+ xi', ve1)
Goantgmny o 3EE

(04 3)
( j tk'ml)
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and sum on i using the Gauss-Jacobi integration of precision 2(j' - k')
~ 1, we obtain Eq. 2.2-25. let a = 0 and 8 = 2k', Eq. 2.4-11 is ob-

tained similarly.
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14. APPENDIX C. T-MATRIX FACTGRIZATION

AS IN REF. 32

Hoffman et al. (32) started from the ground state factorization

relations (22,25,26)

Ty alelih = ] 1 (13 105,0LD) 2

L33 L3, 3
x T, o(Ll0), (14.1)
00 O Om -m o
which are valid in both the ES and I0S for the representation of the T-
matrix chosen. The T-matrix element Tzom(jol j') is for tramsition j'm »
jom and g'o is a common orbital angular momentum quantum number. The
projection of the rotor angular momentum is conserved along the chosen
quantization axis (but not along other axes).
Using procedure similar to that described in Chapter 5, the general

state factorization relations corresponding to Eq. 1l4.1 are (32)

IME ] - —
v, s = (T Y Eat Dy, LT, (D,
Q,Omo ol ( [j]) j%n = l jomo,Jm lom
(14.2)
m +m

L1 T - o . arsan%
[EC IJ)}jomo’jm = I}.:. (- ([JO][J]) Ll

Lijgd"y [ra 3"\ frid) (L3 3
X .
00 O 0m-m 000 Om-m

(14.3)
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Setting 3 = 0 in Eq. 14.2, we recover Eq. 14.1. However, setting -j_ =

i', g(j'] j') does not yield the wmit matrix. Using the fact that
T, A(L[O) =T, oLl 0 8507 (14.4)
o 0
Eq. 14.1 is rewritten in the form (32)

%
Tg,om(jolj') = % D% (13" 151D

Lj_ j' Lj 3
X ° ° T, 4 (LI0), (14.5)
A0 -2 0m-m o

and the corresponding factorization relations are (32)
i

2 —
T, G |50 =L [eG' D1
SN ol [31 jZm 8’|

jo,mt T G0, 46
oo o

where
. mo-!-m . R
16(3 h)]J. m e =L D (L3,10D* (L]

oo L

. Py ] [] ° ry - ry
xLJoJ L3, 3 L3 3} (L3 3 .
A0 - 0m-m A0 - Om-m

(14.7)
The matrix G(j'|j') is an identity, but the factorization of Eq. 14.6

does not preserve the symmetry (71)

Tzomo(jolj') = Tlomo(j'ljo) | (14.8)
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which is satisfied by Eqs. 14.1 and 14.2. The breaking of the symmetry

originated from A being introduced in the 3-j symbol of Eq. 14.1 un-
symmetrically w.r.t. interchanging jo and j.
Finally, we remark that the matrix approach discussed in Chapter 3

can be used to derive the general factorization relations and consistency

conditions starting with Eq. 14.1.
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15. APPENDIX D. DERIVATION OF EQ. 6.1-5

The relation given in Eq. 6.1-5 can be derived easily using the
graphical methods of Yutsis, Levinson and Vanagas (YLV) (98). Here, we
adopt the definitions of Brink and Satchler (99) for graph manipulation.
They are not identical to those given by YLV, but are related in a simple,
well defined way (99). To prove Eq. 6.1-5, we first show that the l.h.s.
of the equation only differs from the 15-j symbol of the third kind
(98) by a phase factor. The r.h.s. of Eq. 6.1-5 then follows by re-
writing the 15-j symbol in terms of 6-j and 9-j symbols (98).

Some very simple graphs and their equivalent algebraic forms are
given in Fig. 15.1. The most simple graph is the antisymmetric symbol

3y S B

d
= (-1

(15.1)
nm, 7

which is denoted by a line with an arrow om it. The sign at each node
of a graph indicates how the cyclic order of the connected lines is
read. A -(+) sign means (anti)clockwise orientation. Very often the
magnetic quantum state labels are suppressed in the graph.

A typical graph consists of sum(s) of products of 3n - j and anti~-
symmetric symbols which can be represented graphically by a dlagram with
n external lines. If the detailed interpal structure of the graph is not
important, it is convenient to represent the graph by a block.

In Fig. 15.2, some useful rules (R.1-R.8) for transforming graphs

are summarized. The first four rules concern adding or removing arrows
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A
|

Fig. 15.1. Some simple graphs and their equivalent algebraic forms



J k| .

R.2 —py—= = —  x (-2
2

Ry ——3 3 x
R.4 + = + = +

x (-1)J1+iz*is

Fig. 15.2. Some rules (R.1-R.8) for transforming graphs
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in a graph. The fifth involves changing the orientation of the node.
Rules 6 and 8 are the "summation rules” and rule 7 is the "multiplica-
tion rule." Note that, rule 6 is just a gemeralization of the ortho-
gonality relations of the 3n - j symbols discussed in Chapters 5 and 6.
Finally, a graph has its value unaltered following any “deformation" if
(99)

(i) the direction of any arrow relative to the nodes it comnects

is unchanged,

(ii) the sign of a node is changed if the cyclic order of the lines

connected to the node is reversed.
It is important to know that, each rule given in Fig. 15.2 corresponds
uniquely to some algebraic maq?pulation. For more discussion om graph
transformations and the proof of the rules given in Fig. 15.2, the reader
is referred to Ref. 99.

There are five different kinds of 15-j symbols. 'meir graphical
representation, symmetry properties and algebraic expansions have been
considered by Levinson and Chiplis (100)¥ and YLV. Here we only consider
the 15-j symbol of the third kind and its properties which are relevant
to the proof of Eq. 6.1-5.

The 15-j symbol of the third kind has the following symmetry proper-
ties (98)
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33 2 Ky Ky 3g 2

o |MdiFe®yteds
1
L, K L = L, K L
ji &) K} K 31 &¢ vost ot ot st
1% Ky Ky g 2 2 3] K; K} 21 31
1 ] ] A} 1 ] ]
s 1 % Ry Ky 3g 4 s PeteX R i h
Z (1y 2 = (=1) 3
= (-1) L, K I (-1 L, K L %, (15.2)
33 %5 Ry Ky 3g 2 Jg g Ky Ky 33 4

where

s, = ®! - K - & -Kp,
Sp = (33 +3g - 25 -2 - Gy +3. -2 -2,

= 1] ] ' ' ] Ty '
s3 (ji+jf+Kj+2.i+2f+K2) (ji+jf+Kj+£i+2'f+K2,)'

(15.3)
The symbol can be written in terms of 6-j and 9-j symbols as follows:

ji 2'1 Kj KR. jf 2'f
L K L

1 £
> 1 ] L T =20 1 ]
33 25 Ry Ky 3¢ 4
]
N X, & 8 R, K E) K KB
- - 1}
%(D (1] K, K, K 3535 Typ Ny & Ly
| ]
3¢ 3¢ Le) (¥ Yg L

(15.4)
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Graphically, the 15-j symbol of the third kind (denoted by Diagram J) is
given in Fig. 15.3.

Fig. 15.3. 15-j symbol of the third kind (J)

We now prove the formula in Eq. 6.1-5. let H be the value of the

l.h.s. of Eq. 6.1-5, which is written in the form

z 3,
H= &~ (-1) [Ji][Jf] Gl GZ G3 64, (15.5)
f
where
j. 2.3
| 3 e I, £ *g s
6; = T Gy = §3s % I3
£dg Lg
, R, K, K
(15.6)
JjLat g
ji zi Ji ' £7f°fF
= = ] |4
€y ' s > 6= 433 %5 35
2 3L
1711 k' K! K

5 g
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We first show that H only differs from J in Fig. 15.3 by a phase factor.
The r.h.s. of Eq. 6.1-5 then follows immediately after using Eq. .15.4 to
rewrite the 15-j symbol in terms of 6-j and 9-j synibols.

4
the multiplication rule (R.7) to form Fl. The sign of one of the nodes

The Diagrams Gl’ G.,, 63 and G, are combined in the given order using

which connects the angular momenta (J i j;_ 2,;.) is changed using R.5. The
same procedure is used for one of the nodes which connects the angular
T A LT AL

momenta (J £ j,'f R.%). Consequently, a phase factor (-1) i

is introduced (see Fig. 15.4). Using R.1l - R.4, the arrows on the lines

associated with the angular momenta ji, 2.;_, 'j% and 2.;3 are removed. After
’ J . +J

multiplying Fl by the factor (-1) it [Ji][J f], the sums on Ji and J £

can be performed to obtain Fz using the summation rule (R.6) (see Fig.

15.5). TUsing R.1l - R.4, we can easily show that

L +L #K K 4K K '+j - +j L1 +L]
H=F,=(p 1 T2 3371700108 g (15.7)

Note that, H in Eq. 15.5 is invariant when the primed and wnprimed vari-
ables are interchanged or when variables with symbol j and £ are inter-
changed. Also, { changes by a sign

=9 1 | v t
3 gHR gt 0 HR R R L] LR

-1 i ] 1 2

when variables with subscript i and £ are interchanged. These symmetry -
conditions follow readily from the symmetry properties of the 15-j symbol

of the third kind (Eq. 15.2). Finally, the r.h.s. of Eq. 6.1-5 is ob-
tained using Eq. 15.4.






] ] ] ]
(-1) 23,+2J¢ (-1) 334+3J 43 1""9' 1+j f+2,f

Fig. 15.4. Generation of Fl

1€
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Fig. 15.5. Generation of F,
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16. APPENDIX E. EVALUATION OF BREAKUP

TRANSITION AMPLITUDES

We verify that the breakup amplitude for the projectile-molecule
system of Sec. 7.1 can be calculated by taking matrix elements of the
Ti operators in Eq. 7.1-4 between appropriate Has -eigenstates. The

corresponding S-matrix elements are

= + +
Sprk, Mk - Vo g il %k (16.1)

B W

+
where the H-eigenfunctions w; correspond to scattering of the pro-

Kk
jectile and various fragments of the molecule. Since

1 o> = 1y o> + (€ By L) = €Ty 1)) V,18, 0> (16.2)

where Gt(E) = g2im G(Exic) and G(z2) = (z-H)_l, we have
e 0+

+

S

g

= = - ¥
R L Y S P R P

- _ F = =
T 2mi G(Emgk EME') <¢m_l_<__]£lvi + Vi G—(EmEE EM Eu) vil¢M_k_'>

21 §(E ) <68 o T 6y L0>
i “YoxklT e

mKk "

(16.3)

]
+

as required.
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17. APPENDIX F. COMMENSURATE CASE ANALYSIS IN COLLINEAR

CID OF AN ATOM-TRUNCATED SQUARE WELL DIATOMIC OSCILLATOR

Assuming % = nq;, where n is an integer, we have (95)
° .
_ _ n-1
sin qkox = gin o f(q;x) = gin - [(2 cos qax)

_ (nzz) (2 cos q;x)n."' + (n;3) (2 cos q;x)n-s - .ee]e

(17.1)

Using this, Eq. 7.2-44 becomes

c

c
. Ak Ak A'xn' a
I?_scs = ——A_T:——— L dx sin QX sin q, X [(2 co.s qx)n i
- (nzz) (2 cos q;;x)n"3 + (n;3) (2 cos q;x)n-s - eeels
(17.2)
so IBs(:s

are

and

i is significant around n different values of 9 - These values

U= G Iy Gty e BoDiagoqg,, (-1 g,

for even n : (17.3)

G = D> 28 = Qys 2q5 + Qs oo =D G2 = gy (-1 g+ qpe

for odd n. _ (17.4)

Bs(Cs

Note that not all these structures show up in the I:l - pk plot because
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from Eq. 7.2-6 we must have 9 > (Vo Zu/hz) (see Figs. 7.4-7.6). Again,

note that no significant structures in the region 9 > 9 -
o
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