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Miasms 

International 
300 N. Zeeb Road 
Ann Arbor. Ml 48106 



www.manaraa.com



www.manaraa.com

8323270 

Chan, Chi-Keung 

FACTORIZATION OF SCATTERING INFORMATION IN MOLECULAR 
COLLISION THEORY 

Iowa State University PH.D. 1983 

University 
Microfilms 

I ntsrnsitiondi 300N.zeeb Road, Ann Arbor,MI48106 



www.manaraa.com



www.manaraa.com

Factorization, of scattering information in 

molecular collision theory 

by 

Chi-Keung Chan 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHÎ 

Department: Chemistry 

Major: Physical Chemistry 

Approved: 

In Charge of Major 

or die Màj6r Departd^t

For the Gaffluate College 

Iowa State Qaiversity 
Ames, Iowa 

1983 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

1. INTRODUCTION 1 

2. ANALYTIC APPROACH TO FACTORIZATION 15 

2.1. Factorization and Consistency Conditions 
for Local Operators 15 

2.2. Applications 24 

2.2.1. Collinear atom-harmonic oscillator 24 
2.2.2. Atom-diatom rigid rotor 27 
2.2.3. Atom-symmetric and atomrspherical 

tops 31 

2.3. Factorization Relations and Consist2 
Conditions for Degeneraqr Averaged j<M|T|M'>l 35 

2.4. Applications 47 

2.4.1. Atom-diatom rigid rotor 47 
2.4.2. Atom-symmetric top 48 
2.4.3. Atom-spherical top 52 

3. MATRIX APPROACH TO FACTORIZATION 54 

3.1. Type A Matrix Structure 55 

3.2. Type B Matrix Structure 69 

3.3. Tensor Product Matrix Structure 79 

3.4. General Propeirties of the Factorization 
Relations and Factorization Matrices 81 

3.5. Other Matrix Structure ®2 

4. EXTRAPOLATION AND INTERPOLATION OF SCATTERING 
INFORMATION USING FACTORIZATION RELATIONS ®4 

4.1. AtomrDiatom Rigid Rotor 84 

4.2. Diatom-Diatom Rigid Rotors 



www.manaraa.com

ill 

Page 

5. ORTHOGONAL APPROACH TO FACTORIZATION 110 

5.1. Properties of the 3-j Symbols 110 

5.2. Applications 112 

5.2.1. Atom-diatom rigid rotor 113 
5.2.2. Atomrsymmetric aad atom-spherical tops 121 

6. FACTORIZATiœ OF PHENŒŒNOLOGICAL CROSS SECTimS 
FOR ATOM-DIATOM SYSTEMS 125 

6.1. Properties of the 6-j and 9-j Symbols 126 

6.2. The S-Matrix in Different Coupling Schemes 128 

6.3. Phenomenological Cross Sections 133 

6.4. Ground State Factorization 138 

6.5. Orthogonal Approach to General Factorization 141 

6.6. Matrix Approach to General Factorization 144 

6.7. Other Factorizations 146 

7. ES FACTORIZATION RELATIONS AND CONSISTENCY CONDITIONS 
FOR DISSOCIATIVE COLLISIONS 154 

7.1. ES Factorization Relations and Consistency 
Conditions 154 

7.2. Vibrational Enhancement/Inhibition for the 
Collinear CID of an AtomrTruncated Square Well 
Diatomic Oscillator 161 

7.2.1. Model and eigenfunctions of the oscillator 162 
7.2.2. Evaluation of the factorization matrix 

elements 165 
7.2.3. Numerical results: factorization matrix 

elements 176 
7.2.4. Numerical results: prediction of 

vibrational enhan cement/inhibition 191 



www.manaraa.com

iv 

Page 

8. EXACT FACTORIZATION OF T-MATRICES 196 

8.1. Nonreactive Collisions 196 

8.2. Dissociative Collisions 202 

9. CONCLUSim 204 

10. LITERATURE CITED 206 

11. ACKNOLHEDQIENTS 212 

12. APPENDIX A. STATEMENTS ON THE ES, UNES AND DHBA 
T-MATRICES 213 

13. APPENDIX B. GAUSS-ASSOCIATED LEGENDRE INTEGRATION 
AND GAUSS-JACOBI UHEGRATION 215 

13.1. Gauss-Associated Legendxe Integration 215 

13.2. Gauss-Jacobi Integration 217 

14. APPENDIX C. T-HATRIX FACTORIZATION AS IN REF. 32 219 

15. APPENDIX D. DERIVATim OF EQ. 6.1-5 222 

16. APPENDIX E. EVALUATION OF BREAKUP TRANSITION 
AMPLITUDES 233 

17. APPENDIX F. COMMENSURATE CASE ANALYSIS IN COLLINEAR 
CID OF AN ATOM-TRUNCATED SQUARE WELL 
DIATOMIC OSCILLATOR 234 



www.manaraa.com

1 

1. INTRODUCTION 

Since the early development of the kinetic theory of gases by Maxwell 

and Boltzmann more than a century ago, it has been universally accepted 

that most observed physical and chemical rate phenomena in fluid systems 

are due primarily to intermolecular collisions. The analysis of inter-

molecular collisions both experimentally and theoretically plays a funda­

mental role in the quantitative understanding of these rate processes. 

When particles (molecules) collide, several processes can occur. 

The most simple one is elastic scattering where the particles are simply 

scattered without any change in their structure or internal state. In­

elastic scattering where the particles undergo a change of their internal 

quantum state during collision is more conçlicated. These processes in­

clude pure rotational excitation, vibrational + rotaticmal excitation and 

electronic + vibrational + rotational excitation. When the collision 

energy is high enough, reactive scattering occur (1-3). 

With the development of molecular beam techniques (4-8), one can 

observe the outcome of individual molecular collisions. The most detailed 

type of information obtainable from a molecular beam experiment is the 

differential cross section for the scattering of molecules between 

specified internal quantum states (9). In nonrigorous language, the dif­

ferential cross section corresponds to the probability that two particles 

with known precollisonal quantum states, which are approaching each other 

with known velocities, are scattered through some definite solid angle 

and end up in specified postcollisional quantum states (10). Detailed 
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results of this nature provide us the most direct information concerning 

the interactloi potential energy of the collision partners. 

The main role of molecular scattering theory is for interpretation 

and correlation of experimental data in terms of the intermolecular poten­

tial energy functions. Given these functions, the theory can be used to 

predict quantities for which no experimental results are available. 

The first detailed treatise on classical and quantum mechanical 

scattering theory is the 1933 edition of the monograph of Mott and Massey, 

"The Theory of Atomic Collisions" (11). Collisions between atoms, elec­

trons and ions are the main concern of this monograph. Only a small ac­

count of the special features that arise when at least one of the colli­

sion partners is a molecule is covered. Quantum mechanical scattering of 

particles with internal structures was discussed in general terms by Lipp-

mann andSchwinger (12) in 1950 and by Gell-Mann and Goldberger (13) in 

1953. The conceptual approach to the theory is very simple. Starting 

from the potential energy functions, the Schrodinger equation for the 

nuclear motion of the particles can be solved. To do this, the wave func­

tion of the system is expanded in a suitable basis set. The resulting 

coupled second-order differential equations (or an equivalent set of in­

tegral equations), which are usually referred to as close-coupling (CO) 

equations, can then be solved using appropriate boundary conditions. From 

the (usually nunerlcal) solution, the scattering (S) matrix or the transi­

tion (I) matrix can be generated. These quantities are defined as fol­

lows. Let be the Haniltoaian for the separated molecules, and V be 
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the interaction potential. The full Haniltonlan for the system is 

H « H + V. (1.1) 
as 

The internal and the relative nuclear coordinates are denoted by t_ and R, 

respectively. In the coordinate representation» the asyn^totlc state 

wave function of is r|m k> = 4>jj(i.) where M is the internal 

molecular state and k is the relative transitional momentum. The full 

scattering states <JçR|Mk ±> = R) corresponding to <j>jj(r) 4>j^(R) are 

given by 

4^(r R) = <x R1S~1I^, (1.2) 

where - &im e gj-e the MoUer operators. The corresponding 
t-*-+ao 

T and S-matrlx elements are given by 

<m IT" I M'k' > = <%| I M'k ' > (1.3) 

and 

<l&|s~lM'k'> = <l&+lM*k*±> = 0^, 6(k-k') - 2iri6(E-E') <%|T*|M'k'>, 

(1.4) 

where the energy E (E') corresponds to ([.M*k'>). The differential 

cross sections and parameters related to various macroscopic rate phenom­

ena can then be determined from the S/T matrix (14-15). Given sufficient­

ly accurate potential energy functions, it is still an enormous task to 

solve those CC equations. In principle, there is an infinite number of 
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coupled equations, but in practice, it is possible to truncate the num­

ber of functions in the basis set, which in turn limits the final number 

of equations to be solved (10). 

The CC methods outlined in the last paragraph can be formulated 

quite generally for both inelastic and reactive collisions. In order to 

obtain accurate results, CC methods usually require a large amount of 

computer time. Because of this limitation, electronic degrees of freedom 

are often excluded in these studies and the main focus of the CC studies 

is on the totatlonal and vibrational excitations. For more discussions on 

CC methods, the reader is referred to articles by Takayanagl (16), Balint-

Kurtl (10) and Lester (17). 

In order to avoid the tedious and time consuming exact quantal close-

coupling computations, approximate methods which are best suited to specif­

ic circumstances have been developed in the last ten years. Among these 

methods are the sudden approximation lAlch traditionally involved the 

exact solution of coupled equations resulted from approximating the 

HamiltonIan. Historically, sudden approximations were developed to treat 

rotational degrees of freedom. There are three main forms of the sudden 

approximation. The first form is the CS approximation which includes the 

A-labeled, j^-conserving coupled-states (CS) approximation developed by 

McGulre and Kourl (18) and the J-labeled centrifugal sudden (CS) approxi­

mation developed by Pack (19). In the CS, the orbital angular momentum 

operator is approximated by an eigenvalue, t^&(&+l). Various forms of CS 

exist and th^ depend on exactly how SL Is chosen. This approximation es-
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sentially says that the relative kinetic energy is sufficiently large so 

that the precise value of the centrifugal potential is unimportant. The 

second form of the sudden approximation is the il̂ -conserving energy sud­

den (ES) approximatif considered by Chu and Dalgamo (20), Seer est (21) 

and Khare (22). Here, the internal rotation angular momentum operator is 

2 approximated by an eigenvalue, t j (j+1). In effect, the rotor state en­

ergies are taken to be degenerate. This approximation is expected to be 

good when the rotor level spacings are small compared to the relative 

kinetic energy. The last form of the sudden approximation is the infinite 

order sudden (lOS) approximation which is due mainly to the development by 

Tsien and Pack (23). In the lOS, both the orbital and internal rotation 

angular momentum operators are replaced by effective eigenvalues. As in 

the CS, the exact form of the lOS depends on how 2 is chosen. 

To elucidate the structure of the scattering equation in the ES 

approximation, let r be the relevant angular variables of the internal 

moticHi of the molecules. If we approximate the angular momentum operator 

by effective eigenvalue form, the resulting Green's operator G° is local 

in r. In the ES approximation, we then have G^(r|r') = ̂  ô(r-r'), where 

k is the relative translational momentum for the collision system. From 

the Lippmann-S chwinger equation (12), it follows that the T operator must 

also be local in r and satisfy 

\ k' \ k' + f V • (1-5) 
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Thus, the Llppmana-Schwinger equation is greatly simplified and the num­

ber of (effectively) coupled equations resulted from this approximate 

Hamiltonian is greatly reduced (24). This simplification results in a 

dramatic reduction in the computational time required for calculation of 

transition probabilities. For more discussion on the early development of 

the sudden approximations, the reader is referred to a review article by 

Kouri (24). 

Besi<ies the computational advantage, one particularly useful conse­

quence of the ES and the lOS is the existence of factorization relations 

on the scattering information — namely, S and T matrices, degeneracy 

averaged cross sections which include both the differential and integral 

cross sectiœs, and the thermal (averaged) rate constants (22,24-29), for 

rotational excitation. In these approximations, the scattering informa­

tion for all possible transitions is not independent, but is completely 

determined by the transitions out of (or into) the ground state. Thus, 

for example, the T-matrix elements can be written as a linear combination 

of T-matrix elements for transitions out of (or into) the ground state. 

In the case of degeneracy averaged cross sections, and thermal rate con­

stants, factorization relations hold exactly only for some systems and 

approximately for others (30-31). The key feature is that the coeffi­

cients in these ground state factorization relations are spectroscopic 

(i.e., completely independent of the collision dynamics of the system). 

The restriction of using ground state data as "input" in the fac­

torization relations has been removed. This was first achieved by 
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Hoffman et al. (32) for the atom-diatom rigid rotor system. They first 

rewrote the factorization relations for the degeneracy cross sections in 

matrix notation, which facilitated the required inversion. Factorization 

relations using arbitrary input rotor states were then derived. This 

method will be referred as the "matrix" approach. Occasionally, we may 

want to distinguish between factorization relations using ground state 

or an arbitrary state as input data. The former will then be referred to 

as the ground state factorization relations and the latter as general 

state factorization relations. In.the same paper another method, based on 

the orthogonal properties of the (Wigner's) 3-j symbols (33), was used in 

deriving general state factorization relations for the T-matrix elements. 

The starting point of the derivation is also from the ground state fac­

torization relations. From now on, this method and an analogous method 

based on the orthogonal properties of the 6-j and 9-j symbols (33) will 

be referred to as the "orthogonal" approach. 

So far, we have discussed the ES in the context of approximating 

the internal rotation angular momentum operator in the Hamiltonian by a 

degeneracy assumption. This unphysical assumption is a rather "re­

stricted" way to state the approximations. Â less restrictive statement 

which is expected to be valid for a large number of scattering systems is 

that the internal coordinates r of the full collision system (e.g., the 

angular variables in Eq. 1.5) change little during the time in which 

the interaction potential acts. It can be shown that this implies the 

T operator is local in r (34). However, the local T assumption does not 
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imply the severe assumption of local Green's operator. In fact by in­

tegrating the Lippmann-Schwinger equation over r' using the locality on 

T, we now obtain 

\ \ + f^' G^,,(r|r') (1-6) 

Here, locality on T has not required locality of G^„(r|r'). In this new 

description, the ES T-matrlx is local in the internal coordinates of the 

colliding particles (30-31,34-35). 

The CS T matrix is local in the relative angular variables (vAlch 

most naturally appear as arguments of the spherical harmonics in a spher­

ical wave basis) and the lOS T-matrix is local in both the internal 

coordinates and the relative angular variables (35). Equations analogous 

to Eq. 1.6 are also true in both the CS and lOS approximations. It is 

worth mentioning that using this new definition, sudden approximations 

can be easily adapted to processes other than just rotational excitation 

(30-31,36-37). 

Chan et al. (31) e^llcltly used the local nature of the T-matrlx 

in the ES to derive the general state factorization relations, which in­

clude the gromd state factorization as a particular case, for complete­

ly general, nonreactlve systems. In this work, analytic techniques were 

tised; this method will be referred as the "analytic" f^proach. A con­

sequence of the work of Hoffman et al. (32) and Oian et al. (31) is the 

realization of the existence of consistency conditions which also involve 

spectroscopic coefficients. These conditions are linear dependent rela-
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tloas in the set of the scattering information out of a single (excited) 

state. 

Using the general state factorizatim relations rather than the 

ground state factorization relations has two advantages if the ultimate 

goal is to use the relations to predict exact scattering information. 

First, predictions of degeneraqr averaged cross sections, not ES derived, 

generally become less accurate as the input state is removed from the 

state out of which the transition being predicted arises, and hence the 

choice of input state influences the accuracy of predictions (32). Sec­

ond, input cross sections from experiments might well be known more ac­

curately for higher states than for ground state. 

Finally, in the ES, locality of the T operator in the internal 

coordinates, r^, implies factorization for the T matrix. The converse 

statement is also true. It is also true that locality in T implies the 

scattering wave functims 4'^(^ R) can be written in the form 

i4(r 8) - 4i,(r) 4<£IS) (17) 

and the converse of this statement is also true. The proofs of these 

statements are given in Appendix A. 

The exact factorization relations and consistency conditions have 

been investigated by Beard et al. (34) recently for both nonreactive and 

reactive scattering. Derivation of these relations is based on the local 

nature of the scatttering potential. Although the coefficients in the 

exact relatims are no longer spectroscopic, their basic structure is 
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still the same as in the ES. For the noareactive scattering, the reduc­

tion of the exact relations to the ES form is investigated. Earlier, 

DePristo et al. (30) in their energy corrected sudden (ECS) factorization 

study (which attempts to incorporate both the internal energy level spac­

ing and the finite collision duration into the sudden S-matrix) proposed 

that the relative kinetic energy of the initial state of the input and 

predicted S-matrix must be the same. Their argument is based on the fact 

that, for spherical potentials, the exact S matrices for all purely 

elastic transitions should be equal, provided they are evaluated at the 

same incident relative kinetic energy. This feature automatically re­

sults when the reduction of the exact factorization to the ES limit is 

made (34). Beard et al. (34) also pointed out that in both the exact and 

the ES factorization relations T-matrix elements used as input data are 

in general half-off-shell (i.e., the T-matrlx element involves states 

with different total energy). Other approaches to exact factorization 

have been considered in various work (38-40). 

Most recently, the exact factorization relations and consistency 

conditions have been considered for the dissociative (36) and nonadla-

batlc (37) processes. In these works, the reduction to the ES form is 

discussed. 

In the kinetic theory of gases, transport and many bulk phenomena 

are described by the Boltzmann equation (41-42). Quantum mechanical 

scattering theory is Incorporated in this theory via the quantal form 

of the Boltzmann equation, the Waldmann-Snider equation (43-44), which 
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involves the S/T-oatxices. From this equation» ezpressims of generalized 

phenomenological cross sections are derived (45-46). Recently, sudden 

^proximatioas have been considered In calculating these cross sections 

(46-53). Coonbe and Snider (51) and Snider et al. (52-53) have developed 

factorization relations for these cross sections starting from, the ground 

state factorization relations of the S-matrix. 

We have mentioned that the existence of factorization relations and 

consistency conditions is a direct consequence of the local nature of 

the T (or, for that matter, any) operator. The Bom approximation (BÂ), 

the distorted wave Bom approximation (DWBA) and the distorted wave 

energy sudden (EWES) approximatif (54) all involve local operator. Fac­

torization relations and consistency conditions therefore exist in these 

approximations. Furthermore, the coefficients in these relations are 

also spectroscopic. We now briefly discuss the nature of these approxi­

mations. 

In the (first) Bom approximation, the T operator is approximated 

by V. Assuming a local potential, then the Bom approximation T operator 

is local in both r and R. In general, the Bom approximation is appro­

priate for weak potentials and high collision energies (55). 

Next, we consider the DWBA and the DWES approximations. Often it is 

convenient to split the full potential V into two parts V = + V* \rfiere 

is the central potential (lAich affects only the relative translational 

motion). Usually, is chosen in such a way that the distorted wave 

function for the scattering potential alone accurately describes the 
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elastic part of the process. Let 5) be the distorted wave func­

tions for the Hamiltonian H = H + V . Since V does not depend on r, o as o o — 

is separable and ij)~m^(r R) can be written in the form 

8) 

In terms of this two potentials decomposition, Eq. 1.3 becomes (55) 

<%|T"|M'k'> = <m|T^|M'k'> + <%^+|T'"|M'k*^±>. (1.9) 

+ 
In the first term, T are the T-matrices associated with H . The second o o 

term involves matrix elements of 

T*- = V'fl'-, (1.10) 

«here fl'" = Aim e between the distorted wave eigenstates 
+ tr^+" 
^oMk^— —^ ®o' Using Eq. 1.8, for inelastic transitions, Eq. 1.9 

reduces to 

<l&lT"lM'k'> = <1^+1T'"|M*^±>. (1.11) 

In the EWBA, T'~ in Eqs. 1.9 and 1.11 are approximated by V. 

Thus, the DHBÂ T operator is local in _r, because of Eq. 1.8 (see 

^pendix A). 

In the DWES, as the name implies, the internal coordinates are as­

sumed not to change significantly while the interaction V* operates. 

If is the long range part of the interaction potential and V is the 

impulsive part, the IXŒS is expected to be good for reasonably hi^ col­
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liding energies. In general, DEfES should increase the range of applica­

bility of the ordinary ES. Using the analysis of Beard et al. (34), it 

follows that T'~ are local In t. Assuming locality of T*~ in it is 

shown in Appendix A that the full scattering wave functions have the fac-

torized form of Eg. 1.7. This in turn inçlies locality of the full T 

(see Appendix A). Therefore, the DWES T operator is local in jc. 

The main objective of this dissertation is to stu^ general state 

factorization relations and consistency conditions. The main ençhasis 

will bë on the ES, althou^ other approximations mentioned above will 

be considered. The three different approaches in factorization (i.e., 

matrix, orthogonal and analytic approaches) will be discussed. The 

analytic approach will be considered in Chapter 2. Several nonreactive 

systems will be used as illustration. The matrix ̂ proach is discussed 

in Chapter 3 using the same collision systems considered in Chapter 2 for 

illustration. Numerical results of using ES factorization relations to 

predict cross sections and thermal rate constants are presented in Chap­

ters 3 and 4. The input data used are generated from methods other than 

the ES. In many physical systems, scattering information can be inter­

polated or extrapolated from two or more sets of input data to a much 

higher accuracy than they can be predicted from a single set of input 

transitions (32). This feature is discussed in detail in Chapter 4. 

Chapters 5 and 6 are devoted to the orthogonal approach and its usefulness 

in generalized phenomenological cross section factorizations. The ES 

factorization relations and consistency conditions for dissociative col-
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lisions and their usefulness in predicting vibrational enhancement/in­

hibition at a particular continuum state are discussed in Chapter 7. The 

exact factorization relations and consistency conditions of Beard et al. 

(34) and their reduction to the ES form are briefly reviewed in Chapter 

8. Also in that chapter, the exact factorization for the dissociative 

collisions and its reduction to the ES form are discussed. There are 

still many unresolved questions concerning factorization in molecular col­

lision theory. Some of these will be listed in the last chapter of 

the dissertation. 
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2. ANALYTIC APPROACH TO FACTORIZATKM 

2.1. Factorization and Consistent Conditions for 

Local Operators 

We have mentioned in Chapter 1 that factorization relations and 

consistency conditions exist for local operators. In this section, we 

will develop these relations. Consider an operator W (e.g., the S or T 

operator) which is local w.r.t. a subset of the coordinates {R} of the col­

lision system. Let be the Hilbert space corresponding to {R}. Ex­

plicitly, we have 

^BR' " \ ô(R-R*) (2.1-1) 

where S(R-R*) Is a Dirac delta function. 

Using Eq. 2.1-1, factorization relations and consistenqr conditions 

may be readily derived following the technique of Chan et al. (31). Let 

{^(R)} be a complete orthonormal set of functims on Since (|)^(R) 

is in H., we can eq»and this function in terms of (R)} to obtain 
X M 

Wr4)^(R) = I <|)jj(R). (2.1-2) 
M 

If M is a continuous variable, the summation is replaced by an Integral 

(see the dissociative collisions discussed in Chapter 7). From Eq. 

2.1-2, we immediately obtain the consistency conditions on the W-matrix 

elements out of the M state (31) 

I <MlwlM> <j) (R') = 0, (2.1-3) 
M 
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i^ere R* is a zero of 4>jj(R)- If derivatives of ̂ ^(R) at R* also vanish, 

then consistent conditions involving derivatives of (j>j^ evaluated at R' 

may also exist. For more discussion, see Ref. 31 and later sections of 

this chapter. 

To derive the factorization relations, we start with the trivial 

identity 

<MjWlM'> . JdR(W^4^«) «•l-« 

and substitute in Eq. 2.1-2 to obtain 

(j)jj(R) (j>^(R) (j)jj,(R) 

<M^IWlM'> = jdR% ^ • (2.1-5) 

If dR and ^ can be interchanged, a factorization relation for general 
J M _ 

W-matrix elements ia terms of matrix elements out of the M state results. 

If we consider M to be the unique positive ground state (56), then, the 

interchange of (dR and ̂  is easily justified since no troublesome zeros 
1 _M 

appear in (|>^(R). For M ̂  0, if the integral involving singularities asso­

ciated with the zeros of (|)^(R) is regularized, Chan et al. (31) have shown 

that the interchange of IdR and ̂  is justified. The resulting factoriza-
•' M 

tion relations are (31) 

<M^|W|M'> - I [A(M' jj <MlwjM> (2.1-6) 
M o 

lAere 

(âCM-1» 1h M • MS âô + CCI- (2-1-7) 
O ^ M 
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Here, |*dR Indicates the above mentioned regularization. There are many 

ways to do this. In Ref. 31 the use of Cauchy principal value integrals 

for simple pole singularities is illustrated and a general procedure in­

volving subtraction of suitable linear combinations of consistency condi­

tions (to obtain regular integrals) is also given (see Chapter 3). The 

CCI term in Eg. 2.1-7 indicates that the factorization relations Eq. 

2.1-6 are invariant under the addition of suitable linear combinations of 

consistency conditions. For further discussion, the reader is referred 

to Ref. 31. In the nonreactive system, the integral of Eq. 2.1-7 is 

well behaved at infinity (31), but in the reactive system, the integrand 

may diverge at Infinity. In this case, H^, H' and H have to be diosen 

sudi that the integrand converges at infinity. We will return to this 

situation in Chapter 7 when the dissociation system Is discussed. 

We have derived factorization relations which have "input data" de­

rived from transition out of an arbitrary state. Factorization relations 

^Ich have input data derived from transition into an arbitrary state can 

be derived by interchanging the roles of the indices of the W-matrix ele­

ments. Thus, given any column or any row of the W-matrix, the rest of 

the matrix can be generated throu^ the factorization relations. 

We remark on some general properties of the factorization matrix 

A(M*jM). Specifically (31), 

[A(M' Iïî) ]ji M " M' ' 
o o 
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MM" I M') A(M*1M) = A(M"|M) + CCI (2.1-9) 

and for Cauchy principal value integral choice of regularization 

A(M1M) » I. (2.1-10) 

We have shown that if V is a local operator, then, the factorization 

relations and consistency conditions exist. The converse statement, that 

the W-matrix satisfies factorization relations and consistency conditions 

implies a local W, is also true. The problem is to construct satis-

:fying 

for all M, M'. 

S Impose we construct by choosing M' = M in Eq. 2.1-12. Then what 

must be shown in that the same function results from all other choices 

M' 4 M. Consider for M' 4 M, 

(2.1-11) 

or equivalently 

(2.1-12) 

l/<j)^.(R) I <l>jj(R) 
M 

i/<l>ïî(R) I «(^(R) <L|wiM> = (2.1-13) 
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as desired. To obtain the last line in Eq. 2.1-13, we have used the clo­

sure property of ^ to do the sum on M. 
M 

If (|>„(R) is in tensor product form 

V' = 9 V'V (2.1-14) 

R . (Rj, ilj). M - «1. »2' 

then the consistenqr conditions on the W-matrix elements 

is of the form (31) 

I <|>jj (Rp = 0, for s = 1, 2 (2.1-15) 

where R* is a zero of ({>„ (R) • In this case, the factorizatioi matrix is 
® "s 

in tensor product form (31) 

A(MpI^ |M^) = A(M£1M^) @ A(M^ iMg) • (2.1-16) 

The factorizations of the T-matrix in the approximations referred 

to in Chapter 1 are summarized in Table 2.1. The second column gives the 

coordinate in which the T-matrlx is local and the third column gives the 

corresponding state label. We use _r for the internal coordinates of the 

colliding particles and R for their relative separation (and R for the 

direction of R). The complete set of expansion functions in Eq. 2.1-2 

for each different approximation is given in the fourth column. Finally, 

the form of the factorization matrix elements for each approximation is 

given in the last column of the table. 
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Factorization matrix 
E^^anslon set elements 

{yr)} 
o 

{i^ Y^J^(R)} [A^WX'p «1^ X ,u 
o o 

o o o 

{*^(r) S (2%)"^/^ e^'-} [A^(M'l^]jj jj 6(k-k+k' -k^) 
o 

(yr)} 
O 

{yr)} 
o 
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In the ES, the T operator is local in the internal coordinates t. 

So we choose R > ̂  in Eq. 2.1-1 and {^(r)} is then a complete set of 

orthonormal internal state wave functions. The factorization relations 

of the ES T-matrix elements are 

<M^1T|M'> = J <M1T1M> (2.1-17) 
M o 

where the factorization matrix elements ^ are given by Eq. 
o 

2.1-7 after replacing R with r. 

The full Hilbert space for the collision system is equal to @ 

H y where is associated with the trans lational degrees of crans trans 

freedom. Let k be the relative momenta, which are state labels in 

^trans* k be the corresponding wave number. From the analysis of 

Beard et al. (34), after putting into the state labels of the 

T-matrix element on the l.h.s. and the r.h.s. of Eq. 2.1-17 becomes 

<M^^lT|M'k'> and <MI^lTjMk*>, respectively (see Chapter 8). The 

T-matrix elements used as input data in Eq. 2.1-17 are in general half-

off-shell even if k and k* are chosen such that the predicted T-matrix —o — 

elements are on-shell. 

In the CS, the T-matrix is local in R. If we use a spherical wave 

basis (57) for the relative trans lational motion, then a conçlete set of 

relative orbital angular momentum states (r.o.a.m.s.) {i^ Y^^(R)}, given 

in terms of spherical harmonics is a suitable expansion set. The phase 

0 
factor i is in according to the phase convention of Arthurs and Dal-

gamo (see Ref. 58 and 59). Here, factorization matrix connects T-matrix 
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of transitions out of a given r.o.a.m.s. to transitions out of another 

r.o.a.m.s. The internal state labels and the relative wave number (mag­

nitude) labels are arbitrary, but fixed. Since the kinetic energies 

depend only on the relative wave numbers, which are fixed in the fac-

torizatiw relation, the input T-matrix elements are on-shell if the pre­

dicted T-matrix element is on-shell. 

In the lOS, the T-matrix is local in both jc and R. Hence, a com­

plete set of tensor product form @ i^ is a suitable expan­

sion set. The consistency conditions are given by an expression analogous 

to Eq. 2.1-15 and the factorization matrices are in tensor product form 

of ̂ ^(M'[m) X). Some further simplification is possible 

using the rotational invariance of the colliding system. This will be 

discussed in Sec. 2.2.2. 

In the BÂ, the T-matrix is local in ̂  and R, i.e., is local in the 

coordinate representation of the full Hilbert space H. Hence, each func-

—3/2 ik*R 
tion in the expansion set is in tensor product form <|)^(j[) @ (2ir) e — 

vAiere the second factor in the product is the plane wave state of the re­

lational translaticmal motion. The consistency conditions are given in 

the form of Eq. 2.1-15 and the factorization matrix elements are in the 

ES 1^— — 
form [A (M' M)3„ „ 6(k-k+k* -k ). The Dirac delta (S(k-k+k' -k ), — Ma O O O 
which results from the factorization matrix integral on R, means that 

the input T-matrix elements have the same momentum transfer as the pre­

dicted one. 

We have shown in Chapter 1 that both the DWBA and the IX7ES T-matrices 
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are local in r. Hence, the form of the factorization matrices and the 

consistency conditions in both approximations are the same as in the ES. 

Ihe fact that IMBÂ factorization relations have the same spectroscopic 

coefficients as in the ES was first recognized by Coombe and Snider (51). 

In the following sections, T-matrix factorization in a few nonreac-

tive collisiw systems will be used to illustrate the analytic techniques 

that have been discussed. For discussion on other more general systems, 

the reader is referred to Ref. 31. The nature of the zeros of the input 

state ())^(R) in Eq. 2.1-7 and the number of consistency relations in each 

system will be discussed in detail. The focus of discussion will be on 

the ES with some brief consideration of the CS. This discussion to the 

other approximation given in Table 2.1 is easily generalized. 

2.2.1. ColUnear atom-harmonic oscillator 

We first consider a coUinear atom-harmonic oscillator system. The 

oscillator has a potential well of infinite width. The vibrational 

coordinate x is the only internal coordinate and ranges from to +=». 

The internal state wave functions are given in terms of Hermite poly­

nomials 

where a is the usual parameter. The quantum number m is the vibrational 

state of the oscillator and corresponds to the number of nodes in the 

2.2. Applicaticms 

(2.2-1) 



www.manaraa.com

25 

wave functions. All the zeros are simple (60-61). The cmsistency con­

ditions of the T-matrix elements <m|T|m*> in the ES are (31) 

J <m|T|m'> (2™ m!) E^(i/a x^,) = 0, i = 1 to m' (2.2-2) 
m 

where x^, is the i*"^ zero of d> , (x) and there are m* of them, 
m m 

The m' consistency relations for a general oscillator are similar 

to those of Eq. 2.2-2 and can be considered as a set of linear equations 

for the m' downward transition matrix elements <m|T|m'> where 0 ̂  m < m'. 

Provided the set of equations is nonsingular, it can be solved so that 

the consistency conditions become expressions for the T-matrix elements 

for downward transitions out of the m* state in terms of matrix elements 

for upward transitions. In the specific harmonic oscillator case of 

Eq. 2.2-2, these expressions can be made to assume a particularly single 

form. We multiply Eq 2.2-2 by w^, (2^ V.) u H^(i/Sx^,), tAere 

£, < m' and w^, is the weigjht of the i'^ zero for the Gauss-Hermite inte-
m 

gratioa of order m, then by summing over i (using the fact that the 

Gauss-Hermite integration has a precision 2m -1 (62)) we reduce the 

consistency conditions to the form (31) 

<JllTlm'> = -Tr"^(2\l)'^ X (2'm!)"^[Y w\H.(/â (/ÔTx^,)] <m|T|m'>, 
m=2m'-A i=l ® ^ ^ * 

(2.2-3) 

for & < m' or & = 0 to m' - 1. 

This is the desired result. 
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The general form of the factorization matrix elements, written us­

ing Cauchy principal value integrals (denoted by |dx ( )) to regularize 

simple pole singularities of the integral are (31) : 

_ r 

o ^ m ± 

The constants c2 (i) are arbitrary. The integral of the Cauchy 

principal value integral is a ratio, H H H ,/H of Hermite polynomials m m m m o 
multiplied by the Hermite polynomial wei^t function. The correspond­

ing integral can be evaluated and is given in terms of Dawson's inte­

gral in Ref. 31. 

Finally, we remark that for problems where the range of the vibra­

tional coordinate is restricted because the potential well has finite 

width (e.g., a square well), the "nodes" at x = for an infinite width 

well now occur at the finite end points. Since the asymptotic behavior 

of the wave function at these points is essentially state independent, 

from Eq. 2.1-2 clearly no additional consistency conditions are intro­

duced. The previous discussion goes through virtually unchanged (where 

the state label again gives the number of interior nodes). Â point where 

we have to be careful is in considering the effect of dissociation. The 

general considerations we have given are presumably all right when the 

bound states are deep in the well, but when this is not the case contribu­

tions from the continuum states in the factorization relations are imr-

portant. In this situation, the expansion set in Table 2.1 should in­

clude the continuum states. We will return to the dissociative problem 

in Chapter 7. 
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2.2.2. Atom-diatom rigid rotor 

In an atom-diatom rigid rotor system, we are interested in the 

rotationally inelastic transitions. Since the rotor is rigid and 

hence vibrational coordinates are ignored. The T operator is local 

in the rotor's orientation r in the ES. The internal state wave func­

tions given in terms of the spherical harmonics can be written in the 

form 

(|) (r) = Y (r) = (j) (x) , r = (e,<j> ), M = (jm), x = cos 6, 
M 3m ] 

(2.2-5) 
where 

/fj] (1- m ) 
2 (j+ m ) 

1/2 , , 
Pj' '(x) (2.2-6) 

and 6,4> are the usual polar angles, is the associated Legendre 

function, and the notation [x] = 2x 1 is used. In Eq. 2.2-5, j is 

the rotor state quantum number and m is the corresponding magnetic quan­

tum number. The only zeros of the wave function are in P^^^^(x), i.e., 

in i))j(x). There are j - |m| sing»le zeros inside the interval (-1, +1) 

and (possibly) nonsimple zeros at x = ±1. At these points, P^^™^(x) may 

2 1/2 not be analytic in x but always is in z = (1-x) and the zeros are of 

order |m| in z. Denote by x » the zeros of iy, (x), including end 

points if appropriate, and assume that each of the set of functions 

{(j)™(x)}, for all j, is analytic at x^,^, in some parameter z^(x). Let 

n^ be the order of the zero in z at The consistency conditions on 
X j m 

<jm|T| j'm'> in the ES are (31) 
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j» |n| 

.2 d .m = 0 ,  (2.2-7) 

j'm/ 

for 0 ̂  £. <. n - 1, for each 1 and for each m. Here consistent^ rela­

tions with derivatives arise from higher order zeros at the end points, 

Bl' where the derivatives of also vanish. Note that some of the condi­

tions may be trivial if some of the derivatives on the l.h.s. of Eq. 

2.2-7 also vanish. For each j', m* and for each m (of which there are 

an infinite number of possible choices), the number of consistency rela­

tions from this analytic approach, is 

(j'- |m'I) + 2 max (0, |m*|-|m|). (2.2-8) 

The first term is from the simple internal zeros and the second term is 

from the (possibly higher order) zeros at the end points. 

When m = m', 

N* = j' - |m'|, (2.2-9) 

there are no nontrivial consistency relations from the end points. The 

consistency condition of Eq. 2.2-7 in this case reduces to 

c 
3=1»' I 2 ( j+lï* 

0,  

for each m' and for i « 1 to j' - |m'|. (2.2-10) 

,th where is the i^" (internal) zero of pj"'(x). The j' - |m* | rela­

tions of Eq. 2.2-10 can be considered as a nonsingular set of linear equa­
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tions for the j' - |m'| downward transition matrix elements <jm' 

where |m' | <j'. Making use of the Gauss-associated Legendre integra­

tion of order j* - |m' | with precision 2(j' - |m* |) - 1, and letting 

"til Wjt^i he the weight of the i zero, we can rewrite Eq. 2.2-10 in the 

form (see Appendix B) 

<j^m' |t1 j 'm'> = -
0„1 (j, - I»" I)! 
2 (3„+ |n'|): 

1/2 

.1 
Ml (.1 - m* 
2 (j + 

c 
m' 

1/2 

iW- "j'"' 
(1 -

(2.2-11) 

for |m' 1 << j'. 

The factorization matrix elements are given by (31) 

[*!' CCI. 

(2.2-12) 

where 
_  1  r 2 n  

= ̂  J d<j) 
2ir im6 -imo<f 

^ ^ = 6 , -
iJBb m —m ,m-m 
e o 

(2.2-13) 

and for values of the m's satisfying the Kronecker delta condition 

lâ Ï ̂ (3- |T)lj J - I ax ^ — • (2.2-14) 
o 1 <1)̂ (X) 

j 
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Because of the condition in Eq. 2.2-13, higher order zeros at x = ±1 do 

not produce singularities in the integral of Eq. 2.2-14. Although the 

integral converges at these points, consistency conditions still exist 

there. It should be remembered that it sometimes happens that the inte­

gral of Eq. 2.2-14 may be nonsingular at some zero of (j>y(x) for all 

values of j. In this case it is of course not necessary (although not 

incorrect) to regularize the integral (i.e., regularization has no ef­

fect) . 

The treatment of the CS factorization on T-matrix elements 

<2X|T|2'X'>, where the state labels are for the relative orbital angular 

momentum states, is identical to that In the ES. The only difference 

0 i. ^ 
is the phase factor 1 in the expansion set {1 Y^^(R)} (see Table 2.1). 

Here, the internal state labels are arbitrary, but fixed, and are sup­

pressed. Finally, it is worthwhile to mention again that the T-matrix 

elements input are on-shell if the predicted T-matrix element is on-

shell. 

In the lOS, the factorization matrix is in tensor product form of 

A^^(j'm*lj m) 0 Af^(&'X'|& X). The matrix elements of A^(£'X'|£. X) 

are given by formula given in Eqs. 2.2-12 - 2.2-14, if all $™(x) are 
a X ^ 

replaced by 1 <t>j^(x). Since the |0000> state is spherical symmetric in 

the coordinate representation, it can be easily shown using rotational 

inv:trlance that 

<jm2X|T|0000> = 6^^ 5^^<jmilXlTlOOOO>. (2.2-15) 
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Using this condition, the grotmd state factorization relations are great­

ly simplified (see Chapter 5). 

Finally, in the ES two rigid rotors system, the internal state wave 

functions are of the tensor product form 

- <'!• - Ol°l 32°2> 

(2.2-16) 

where 1 and 2 stands for molecule 1 and 2, respectively. The treatment 

of the T-matrix factorization easily foUws and in particular (31) 

j^lil^l ̂ 2^ " ® ̂ ^02*2102*2) 
.ES, 

(2.2-17) 

Treatment in other approximation is easily adapted. 

2.2.3. Atom-symmetric and atomr-spherlcal tops 

The symmetric top and spherical top wave functions may be chosen as 

the normalized three dimensional rotational group R(3) matrix elements 

(57) 

yr) = 
1/2 ^IkY ̂ ima 

(2.2-18) 

r «= (a,6,Y), M= (jkm), |k|, |m| ̂  j, x = cos g. 

where 

ill 
2 

1/2 
4m(=)' (2.2-19) 
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and a, y are the usual Exiler angles. For nonnegatlve values of 

k-m and k+m (this implies k 2 |™| >. 0), d^^(x) is given in terms of the 

Jacobi polynomials (57) 

-
( i + k) ! ( i - k) ! 
(j + m) ! (j - m) ! 

,(k-m,k+m) 

1/2 

(Y)^ (1 + x) 

k-hn 
2 (1 - x) 

k-m 
2 

(x). 
(2.2-20) 

For other values of k and m, similar expression can be written down using 

the symmetry properties of d^(x) (57). The only zeros of <ji^(r) are in 

d^(x), i.e., in (|)^(x). There are j-max ( |m|, |k|) simple zeros inside 

the interval (-1, +1) and (possibly) nonsimple zeros at x = ±1. At these 

i 1/2 points d^(x) may not be analytic in x but always is in Z+ = (1 + x) at 

X = ±1, where the zero is of order |k +m| in Z+. Denote by x = 

the zeros of (x) (or d^,^,(x)), including end points if appropriate, 

and assume that each of the set of function {(t>.^(x)}, for all j, is 
; J 

analytic at in some parameter Z^(x). Let n^ be the order of the 

zero in at The consistency conditions on <jkm|T|j *k'm'> are 

(31) 

<jkm|T| j'k'm'> 
dZ 

km 0 ,  (2.2-21) 

^j'k'm' 

for 0 ̂  n - 1, for each 1 and for each k and m. Here, consistency 

relations with derivatives arise from higher order zeros at the end 

points. The symbol means the sum is taken over those j values consis­

tent with the fixed choice of k and m. Note that some of the consistenqr 

conditions may be trivial if some of the derivatives on the l.h.s. of Eq. 
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2.2-21 also vanish. For each fixed value of m and k (of which there 

are an Infinite number of possible choices), the total number of con­

sistency relations obtained by using the analytic approach is 

= (j *-max( |m* I, |k* [)) + max(0, |k*-m* |-jk-mj) + max(0, |k'+m' |-|k-hn|) . 

(2.2-22) 

The first term is due to the simple internal zeros, and the second and 

the third terms are from the (possibly higher order) zeros at the end 

points X = +1 and x = -1, respectively. 

When m = m' and k = k*, N becomes 
a 

N^= j' - max( |m' |, |k'|), (2.2-23) 

there are no nontrivial consistency relations from the zeros at the end 

points. For k* ̂  |m' | ̂0, using Eq. 2.2-20, the consistency relations 

of Eq. 2.2-21 reduce to 

X <jk'mMTlj'k'm'> = 0, (2.2-24) 

for each k* and m* and for i = ltoj' -k'. Making use of the Gauss-

Jacobi integration of order j' - k' with precision 2(j' - k*) -1 and letting 

^j'k'm' the weight of the i^^ zero, we can reduce Eq. 2.2-24 to the 

form (see Appendix B) 
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<j k'm'jl] j'k*m'> = -
[j*] 

1/2 

2k'+l 
2^ 

I 
fil d-k')! C.i4k')! 1/2 i (k'-m',k'4m') i 

^ "'j'k'm' 3^-k' ^^j'k'm 

<jk'm' |t1 j*k'm'>. 

for k* < 3^ < j' (2.2-25) 

For other values of k* and m', similar expression can be obtained using 
A t 

the symmetry properties of d^,^,(x). 

The factorization matrix elements are given by (31) 

[^O'k'm'IT km)] .jkm" bjl' "•> ] «t -k'.k^ 
"'o o o K m k m ""o o 

X 6 , - + CCT. (2.2-26) 
m^—m ,mr-m 

For values of k and m*s leading to a nonzero factorization matrix ele­

ments 

[a^' ='\%(j,|j)] !" 
k m k m ^o '-l 

+1 *.^(x) <j>.'^o°o*(x) <j)^',®'(x) 

dx— • 

(tij °(x) (2.2-27) 

Again, the Cauchy principal value integral is used to regularize the in­

tegrand with simple pole singularities, and because of the Kronecker delta 
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coaditlcms in Eq. 2.2-26, higher order zeros at x = ±1 do not produce 

singularities In the integral of Eq. 2.2-27. Although the Integral con­

verges at these points, consistency conditions from these zeros still 

exist. Again, It should be remarked that it sometimes happens that the 

integrand of Eq. 2.2-27 may be nonsingular at some zero of ™(x) for 

all values of j. In this case, it is of course not necessary (although 

not incorrect) to regularize the integral (I.e., regularizatlon has no 

effect). 

The treatments of the T-matrix factorization in other approximations 

and in the two symmetric/spherical tops system can be easily given by 

simple extension of our argument. We will not discuss them further. 

2.3. Factorization Relations and Conslstenqr Conditions 

for Degeneracy Averaged 

We now consider the factorization of the quantities |<M|T|M*>|^ 

where the T operator satisfies Eq. 2.1-1. Here, M and label states 

in H^. (The discussion will also apply for any operator that is local 

in H^.) 

We assume that each M is deconçosed into two sets of discrete 

quantum numbers H = M^, such that the state vectors for each 

fixed form the basis of a different, single unitary irreducible repre­

sentation of some group. By "single" we mean that the nunber of possible 

values of is the dimension of the representation, which is denoted by 

and we shall refer to the set of states with fixed as a symmmetry 
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class. Let F„ be the projection operator for the span of the states 

with the quantum number M,, then Its R, R component Is defined by 

and develop factorization relations for this quantity. If the symmetry 

classes are also the energy levels, then the averages defined in Eq. 

2.3-2 are also the (energy) dengeneracy averages. 

For T local in the internal coordinates, the choices of and 1^, 

and P^, g^ and the associated group for some collision systems are given 

in Table 2.2 (31). In a colllnear atomrosdilator with symmetric poten­

tial, the finite group consisting of the inversion operation and the 

identity can be used to define symmetry classes. The corresponding aver­

aged quantities defined by Eq. 2.3-2 are not degeneracy averages. The 

factorization relations for these quantities are given in Ref. 31. Since 

they are only of formal Interest, we will not discuss them here. 

In the atomrdiatom rigid rotor system, the full symmetry group of 

external rotations R(3) is used to define the symmetry classes. The rigid 

rotor wave function {Y. (6^)} for each fixed j, provide a basis for a 
Jm 

2 
different irreducible representation of R(3). The quantities T (j|j*) de­

fined in Eq. 2.3-2 for this system are (energy) degeneracy averages. It 

(2.3-1) 

«2 

(2.3-2) 
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Table 2.2. Possible symmetry classes can be defined in some common 
systems in which the T-matrix is local in the internal 
coordinates. Here, the notation [j] = 2j+l is xjsed 

System M, (R|R) 

atom-diatom 
rigid rotor. m e,cj) 

atom^symmetric 
top j, |k| sgn k, m ogy a'3'y' 

j» k m OSY a'3'Y* 

atom-spherical 
top k, m OBY <j> 
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P„ (rIr) Degeneracy 
X z Group average 

Pj(cos Y) [j] R(3) yes 

BTT 

X [cos k(a'+Y')] 

(2-*|k|,9)[3] R(3)xD^ yes 

•4 "4 01 W» ' c-b 
STT 

(*) [j]^ R(4) 
8w 

no 

yes 
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follows readily from the addition theorem for spherical harmonics that 

the projection operator for the symmetry classes are given by 

Pj(cos y), where P^(cos y) is a Legendre polynomial and y is the an­

gle between (0, <i>) and (0,<j)). Note that, {P^(cos y)} is a complete set 

on y. 

In the atom-symmetric top system, we can define two different sym­

metry classes. One is to use the full symmetry group of the symmetric 

top, namely R(3) x (i.e., external rotations x internal symmetries). 

The top wave functions {( [j } where = (agy), for each 

fixed j and |k|, provide different irreducible representations of 

R(3) X (of dimensiw [j] for |k| = 0 and 2[j] for |k| >0). In this 

case, the averaged quantities defined in Eq. 2.3-2 are given by 

= (2-5, ^ )ri'l ̂  2 |<jkm|T|j'k'm'>|^, 
*|k'|,0'l] 'sgn k am' 

%= (2.3-3) 

i.e., degeneracy averages. It follows readily from the group closure 

property and unitarity of the representation (57) 

I 1^(0) = 1^,(0'), (2.3-4) 
m 

—1 
where = S £2 represent a rotation throu^ 5 followed by one through 

-1 R , that the projection operators for the symmetry class are given by 

[j] (2-6|, , q) . 
(0|R) 2 d^(x') cos[k(a' +y*)l, (2.3-5) 

setting = (a'S'v') and x' = cos 6'. The set {d^(x') cos[k(a'+Y')]} 
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is complete on functions of B* and a' + Y* » which are even and periodic 

(of period 2ir) in a' + y'. 

Another set of symmetry classes are obtained from the smaller sym­

metry group R(3) X Cgg (where the internal rotations are about the sym­

metry axis). The top wave functions provide different irreducible repre­

sentations for each fixed j and k. The symmetry class projection opera­

tion are given by D^. (0') with 0' defined as previously. The set 
Sir"' ^ 

{D^^(fl*)} is complete on functions of 3' and a' + Y*» which are periodic 

(of period 2ir) in a* + Y'- Note that, T^(jkjj*k')» defined in Eq. 

2.3-2 for this system are not degeneracy averaged quantities. 

Finally, in the atomrspherical top system, the symmetry classes are 

defined here using the full symmetry or noninvariance group for this sys­

tem, namely, R(4) = R(3) x R(3) (external rotations x internal rotations) 

(63). The top wave functions (identical to those in the symmetric top), 

for eadi fixed j, provide a different irreducible representation of R(4) 

2 
of dimension [j] . The symmetry class projection operators are de­

termined from Eq. 2.3-4 to be (64) 

P,(ÏÏlR) =-^X^(<J>'), (2.3-6) 
J Sir 

where is the character for the j'^ irreducible representation of R(3) 

and is the class parameter (angle) associated with 0' =05^ (64). 

The set {x^(4>)} is coiq>lete on the class invariant functions for R(3) 

(65), and x^( ) are related to ( ), the even Chebyshev polynomials of 
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the second kind, by 

X^(*) ' ° Ugj (cos */2). (2,3-7) 

2 The quantities T (j|j*), defined in Eq. 2.3-2 for this system are de­

generacy averages. 

In the CS, the rotation group R(3) can be used to define the sym-

metry classes for any system. The r.o.a.m.s. wave functions {i Y^^(8,4))} 

for each fixed Z, provide a difference irreducible representation of 

R(3). The projection operation for the symmetry classes are given in 

terms of the Legendre polynomials P^(cos y) (parallel to those in 

the atom-rigid rotor system in the ES). Now the averaged quantities de­

fined in Eq. 2.3-2 are 

T^(&|r) = |<AX|T|&'X'>|2. (2.3-8) 
XV 

The suppressed internal state and wave number labels are arbitrary, but 

fixed. In the factorization relations, the input T-matrix elements are 

on-shell if the predicted T-matrix element is on-shell. 

We now sketch the proof of those factorization relations. In terms 

of the projection operators defined in Eq. 2.3-1, Eq. 2.3-2 becomes 

T^(M^|Mp = ^ jdR P^(R|R) P^(R|R) . (2.3-9) 

From Chan et al. (31), if the quantum labels M = M^, are appropriate­

ly decomposed and for values of R and R such that ̂ ^(R|R) f 0, the 
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completeness type relations 

Pjj (RjR) P^,(R|R) gjj. 

^ I, P, (Z.3.10) 

are valid. The validity of the above es^ansion may be demonstrated 

directly from the completeness of {P^(R|R)} given in Table 2.2 for 

various systems. Assuming Eq. 2.3-10 to hold and substituting it into 

Eq. 2.3-9, we obtain the factorization relation (31) 

2., I- . (2.3-11) T (M^lMp = I T (L^lM^). 

MiMi 
If we define a new operator F— which has the l.h.s. of Eq. 2.3-10 as 

M 

its R,R component, i.e., 

HXMI X®!"» V'® 
Ejf \R R) = — , (2.3-12) 
^ K (RIM 

then the factorization matrix elements [G(1^|M^) given e^licit-

ly by (31) 

h5^\ "i h 

\ % n J. 1 „ \ (2.3-13) 

with Tr( ) denotes a trace. Typically, the trace in Eq. 2.3-13 involves 

an integral of some integrand vdiich has singular points. There is then 

some flexibility in [G(M^|M^) ; the values of the matrix element de­
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pend on how the integrand is regularized. Aay flexibility in the fac­

torization relatims corresponds to consistency conditions (as seen in 

the T-matrix factorizatioa). More specifically, substituting Eq. 2.3-

13 into Eq. 2.3-11, we obtain 

% M.ÎL 
^  T r  ^  T ^ L ] .  ( 2 . 3 - 1 4 )  

It is clear that if the r.h.s. is to be independent of the choice of 

régularisation, we must have the consistency conditions 

Î (\IV = 0, (2.3-15) 

where (R^|R^) correspcmds to any of the above mentioned singularities. 

For hi^er order zeros w.r.t. some variable for which P^ ( | ) is locally 
1 

analytic, the corresponding set of consistency conditions involves appro­

priate higher derivatives of P^ ( | ) (cf. previous sections). 

As a consequence of Eq. 2.3-15, we can add to [G(M^|M^) ^ 

term of the form (const) x —^ P_ (R IR ) (where the constant can depend 

on î^, M^, M^, R^ and R^, but not on L^^) and still have Eq. 2.3-11 re­

main invariant. Additive terms corresponding to consistency conditions 

from any higher order zeros involve the appropriate derivatives of 

I )• This flexibility is formally seen to be consistent with the 
MiMÎ 

fact that (R|R) is uniquely defined by Eq. 2.3-12 except at singu­

lar points. 

The scattering cross section is related to the square of the magni­
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tude of the on-shell T matrix, for the transition of interest, by a fac­

tor which depends on the kinetic energy of the relative motion and is 

thus determined by ̂  and k' (using the notation of Sec. 2.1). In the 

restricted ES and lOS, where internal energy degeneracy are assumed (see 

Chapter 1), if k', M' -»• is on-shell for some values of M* and 

M , it is also on-shell for all values of H* and H for the sane fixed 
o o 

values of k* and It follows that suitably averaged transition cross 

sections in the ES and lOS obey the same factorization relations as do 

the corresponding averaged square magnitudes of local T-matrix elements. 

Hence, factorization relations of Eq. 2.3-11 should apply directly to 

degeneracy averaged cross sections lAen the symmetry classes are also 

energy levels. If the energy levels do not correspond to a choice of 

symmetry class, the factorization relations of Eq. 2.3-11 can still 

be used approximately for degeneracy averaged cross sections. The na-
MlMi 

ture of the approximation is to ignore off-diagonal elements of ; 

this approximation is frequently used in problems concerning the vibra­

tional degrees of freedom (30,66). 

It is worth mentioning that, in the CS, averaged cross sections de­

fined by 

a(rj*m' -»• Jljm) a(rX'j'm' JlXjm) (2.3-16) 
XX' 

2 satisfy similar factorization relations for T (&|&') defined in Eq. 

2.3-8. The factorization relations for a(2.'j'm* &jm) are exact for 

T local in S. (see discussion after Eq. 2.3-8). In these relations, the 
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internal state labels (j's and m*s) are arbitrary, but fixed. The cross 

sectims -*• £jm), are not physical observable quantities. If we 

sum over the 2's on both sides of Eq. 2.3-16, then the resulting cross 

sections, (j'm' jm), are the total cross sections for rota­

tional transitions. Thus, factorization relations for 0(£*j'm* &jm) 

are still useful in reducing the amount of calculation required to de­

termine total cross sections. 

We remarie on some general properties of the factoirization matrix 

G(M^|l^) which are analogs of Eqs. 2.1-8 to 2.1-10. Specifically (31) 

and for Cauchy principal value integral choice of regularizat ion 

Suppose there is a pairing of symmetry class labels M_ +-»- M_ such that 

(2.3-17) 

G(M^|M]^) G(M^lMj^) - G(iqlM^) + CCT (2.3-18) 

(2.3-19) 

(2.3-20) 

then (31) 

(2.3-21) 



www.manaraa.com

46 

and 

% 
f f (2.3-22) 

For the case vAiere the symmetry classes correspond to the elgenspaces 

of some self-adjoint operator (e.g., energy or total angular momentum 

classes), we have so 

^ f (M^l^). (2.3-23) 

Similarly, in the case of total cross sections, we have 

g^ a(M^ V = ̂  ^ ̂  » (2.3-24) 

where the kinetic energy labels do not appear. Then, Eq. 2.3-24 is just 

a statement of microscopic reversibility. 

Finally, we consider a system of two structured particles denoted 

s = 1,2. Suppose that symmetry classes denoted may be chosen for each 

particle s = 1,2, and that at least one of these classifications is non-

trivial. It is readily verified that (31) 

Pjj^(RlR) = Pi^(RjlEj) (2.3-25) 

where R = (R^, R^) are the appropriate variables. The existence of fac­

torization relations and consistency conditions now follows the general 

discussion and the factorization matrix has the form (31) 
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GCMj^lïij^) = G(MJ^^IMJ-) @ (2.3-26) 

where the notation is self-explanatory. 

2.4. Applications 

2 In the following sections, the T (MJ^|M^) or degeneracy averaged cross 

section a(M^ -*• M^) (whenever applicable) factorization relations and con­

sistency conditions in the collision systems given in Table 2.2 will be 

presented. The symmetry classes for the internal state wave functions, 

the corresponding projection operator (R|R) and the associated group, 

given in Table 2.2, have been previously discussed. Here, we consider 

in detail the nature of the zeros of P̂ ^(R|R) and the number of consis­

tency relations in each system. These discussions can be easily gen­

eralized to systems with two structured particles. 

2.4.1. Atom-diatom rigid rotor 

The results derived here are equivalent to those obtained by Hoffman 

et al. (32) using the matrix approach which is discussed in detail in the 

next chapter. The factorization relations and consistency conditions 

derived are for the degeneracy averaged cross sections a(j* j). 

Here Pj,(84^8 <|)) = Pj,(cos y), and P^,(cos y) have j' sinçle 

zeros Xji, i = 1 to j', inside the interval (-1, +1). Thus, from Eq 

2.3-15, the consistency conditions are (31) 

I o(j' j) P.(x^,) = 0, i « 1 to j*. (2.4-1) 
j ^ ^ 



www.manaraa.com

48 

These j' relations can be considered as a nonsingular set of linear equa­

tions for the j* downward transitions cr(j' j) between different sym­

metry classes where 0 ̂  j < j'. These can be solved by multiplying Eq. 

2.4-1 by w^, P. (Xjt)» where j < j' and w^, is the weight of the i'^ 
J J o J 

zero for the Gauss-Legendre integration of order j *, and then by summing 

over i (using the fact that Gauss-Legendre integration has precision 

2j* - 1) to obtain (31) 

G(j'-d_) =-^ Z ^ CxJ.) P.(xJ,)] a(j»^), j <j'. 
i=l J Jo J J J 

(2.4-2) 

This is precisely the form of the consistency condition obtained by Hoff­

man et al. (32) using algebraic techniques. 

The factorization matrix elements are given by (31) 

o„3 M-i 
's« • -f- j-.i'* Pj(z) + 

where the CCI term is obtained from Eq. 2.4-1. The matrix approach of 

Hoffman et al. (32) yields just one of the equivalent sets described by 

Eq. 2.4-3. We return to this in the next chapter. 

2.4.2. Atom-symmetric top 

We first consider the factorization of the degeneracy averaged cross 

sections G(j' |k' | -*• j|k|) defined by formula analogous to Eq. 2.3-2. 

Consistency conditions on a(j ' |k' | j |k|) arise from the nodes of the 

function d^,^,(x' ) cos (k'(a' + Y')) (Eq. 2.3-5), \rtiere x* = cos 3'. 
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The cosine has 2 |k*| zeros of which |k'| produce independent consistency 

relations; d^,j^,(x') has j'-jk'! simple zeros in -1 < x* < +1 and a zero 

of order |k' ] in x* at x' = -1 all of which produce consistency condi-
4 t 

tions. Note that the (possibly) higher order zero of d^,^,(x') at x' = 

MiMi 
-1 does not produce a singularity in the Tr(^ integral of Eq. 

2.3-13 since the one dimensional integral over a* + y' vanishes in 

those cases where su(ji a singularity would occur (cf. Appendix A of 

Kef. 31). 

i i i ' 
Let Xj, I I be a zero of order n of d^,^,(x*). The corresponding 

consistency conditions are (31) 

4 
i = 0 , (2.4-4) Z , 0(3'|k'I » jik|) 

j-|k"l dx" *j' k' 

for 0 ̂  j i n^ - 1, for each i and |k|. 

The consistency conditions corresponding to zeros in the a' + y' vari­

able are derived frmn the equations (31) 

A oo'lk'l * j|k|) 4 %(*') cos (k 't'|^.|) • 0, (2.4-5) 

We can reduce these conditions to expressions involving constant coeffi­

cients (31). Let {F—(x*)} be a con^lete set of functions in the x' vari­

able (e.g., Fj'(x') = P^(x'), the Legendre polynomials). Expand d^ ̂(x') 

in terms of {F^(x*)} 
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k^x') = I a_ (2.4-6) 

I ^ 

where the coefficients are uniquely determined. Substituting Eq. 2.4-6 

into Eq. 2.4-5, the consistency conditions reduce to 

j|k| & 

i = 1 to Ik'l and for all 

Jk eos 1^' I -^j|k|) = 0, (2.4-7) 

which is in the required form. Different choices of functions of 

course lead to equivalent sets of consistency conditions. 

The factorization matrix elements are given by (31) 

[ f i a - l k - j i t i  ^ 

j j W * j 
[+1 'Ht k ^ k^*^ f2*ir cos (k <j>) cos (k'<j») cos (k4>) 

X dx—— % I d4» — 
^1 .] , t 4 <^_(x) " 

+ CCT, (2.4-8) 

where the CCT terms are obtained from the consistency conditions of Eqs. 

2.4-4 and 2.4-5. 

Next, we consider the factorization of T^(j klj'k') which are not 

degeneracy averaged quantities. The consistency conditions here arise 

•i 4 ik(ot'+Y*) 
from the nodes in the 6' variable in ^ = d^ ̂(cos 6*) e and 

hence, have the same.form as Eq. 2.4-4. Note that those of Eq. 2.4-5 
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do not occur. Thus, for a given value of k, the total number of con­

sistency relations obtained by using the analytic approach is 

N = (j' - |k' 1) + max(0, |k'| - |k|). (2.4-9) 

\diere the first term is from the simple internal zeros and the second 

term is from the higher order zeros at x =* -1. 

When k = |k'|, = j' - jk'|, there are no nontrivial consistency 

relations from the zeros at x = -1. In this case, for k'^0, using Eq. 

2.2-20, the consistency conditions at Eq. 2.4-4 reduce to 

I. 
j=k' 

m 
,2k'+l 

1/2 
(1 + T^Cjk'lj'k') = 0 , 

(2.4-10) i = 1 to j' - k', 

.th ,(0,2k'),„^ __ J where is the i zero of (x) or d^(x). Making use of the 

Gauss-Jacobi integration (see Appendix B) of order j * - k* with preci­

sion 2(j* - k') - 1 and let w^,, , be the wei^t of the i^ zero, we can 
J 

reduce Eq. 2.4-10 to the form 

T^(j k'lj'k') 
[jo] 

,2k'+1 

1/2 2 ill 
,2k'+l 

1/2 

w^ p(0,2k'),^l ) (0,2k')(1 ) 
^ j*k' j^-k' ^ j'k'"' j-k* 

for k* < < j'. 

f(jk'|j*k'), 

(2.4-11) 
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For k* <0, similar expression can be obtained using the symmetry proper­

ties of d^(x). 

The factorization matrix elements are given by (31) 

tSO'k'lJ = 
"ol H-l 4°k 

f ta-2-2 

di_(») 
k k 

* \o-k* ,k-k CC: 
(2.4-12) 

and the CCT term is obtained from the consistency conditions of Eq. 

2.4-4. The ground state factorizationshave been considered by DePristo 

et al. (30). 

2.4.3. Atom-spherical top 

Consistency conditions on the degeneracy averaged cross sections 

0(j' j) arise from the simple internal zeros of n2j,(cos $/2) (see 

Eqs. 2.3-6 and 2.3-7). If we denote the positive zeros of U2jt(x) by 

X,., 1 = 1 to j', then we have (31) 
9 

y 
jSo ^ i) in = 0,1 = 1 to j'. (2.4-13) 

The j' consistency relations of Eq. 2.4-13 can be considered as a non-

singular set of linear equations for the j ' downward transitions (7(j* j) 

between different symmetry classes where 0 ̂  j < j'. These can be solved 

by multiplying Eq. 2.4-13 by (x^^,), where < j' and w^i is 



www.manaraa.com

53 

the weight of the i'^ positive zero for the Gauss-Chebyshev integration 

of order 2j ', and then by summing over i (using the fact that Gauss-

Chebyshev integration has precision 4j'-l) to obtain (31) 

^ ^ IjT ''2j' 

X a(j' -»• j), 

(2.4-14) 

for < j'. 

The factorization matrix elements can be evaluated in terms of the 

Hurwitz integral (64) (Invariant integral in group space) for R(3) (31) 

IfiO' ID), j • r(1 - cos « + ccr 
V  OlU I ^ J o  

iTlU.l , rfl "zj.W Dy(x) 
a-A.«rr. 

(2.4-15) 
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3. MATRIX APPROACH TO FACTORIZATION 

In the last chapter, using analytic techniques, we derived the 

general state factorization relations for the matrix elements 

with W being a local operator, and for the appropriately averaged 

|<M|W|M'>|^. In particular, known ground state factorization relations 

were recovered (30-31) which we now will use in a different approach 

to factorization. These factorization relations for scattering in­

formation (T-matrix elements, cross sections and thermal rates). 

written in matrix notation, are given by 

S(M») = M(M') 'S(O), (3.1) 

where the component of ̂ (M'), l£(M')]jj is the scattering informa­

tion for the transition M* to M, and the matrix elements [M(M*) ^ and 

equal to [A(M' |0)lj£ ( [&(M' |0)]^ n) ̂ the T-matrix (cross section/ 
o o 

thermal rate) factorization. The relation of Eq. 3.1 for each M* is 

unique since there are no consistency conditions for the ground state 

and, hence, no OCT term in Eqs. 2.1-7 and 2.3-13. 

In the ES atom-diatom, rigid rotor, degeneracy averaged cross sec­

tion factorization, H' in Eq. 3.1 is the rotor state label j. Hoffman 

et al. (32) have derived the general state factorization relations and 

consistency conditions starting from Eq. 3.1. The matrix M(j') has a 

peculiar structure which is determined by the triangular inequality for 

3-j symbols. Equation 3.1 can be inverted for _S(0) by using algebraic 

techniques. From this, the general state factorization relations and 
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conslstexugr conditions axe derived. This "matrix" approach can be 

generalized for those systems discussed in the last chapter. Chan et 

al. (31) have pointed out that the most natural general state fac­

torization relations obtained by the matrix approach are just one of 

the equivalent set obtained by the analytic techniques (the members of 

which differ by the CCT term In Eq. 2.4-3, for exan^le). However, 

the two approaches do not always give the same number of consistency 

relations as will be discussed. In some systems, the matrix approach 

gives more relations than the analytic approach. 

The strategy for successful io^lementation of the matrix approach 

depends mainly on the structure of the factorization matrices M(M') 

which are determined by coupling integrals in Eqs. 2.1-7 and 2.3-13 

with M = 0. In turn, these integrals depend on the nature of the wave 

functions or projection operators of the symmetry classes. We now dis­

cuss different types of typical ground state factorization matrix struc­

tures and the correspcmding algebraic techniques needed in deriving the 

general factorization relations. 

3.1. Type A Matrix Structure 

In this section, we consider the structure of the ground state 

factorization matrices ̂ (m') which arise from (|>^,(R) ̂P^,(R|R)j where 

m' is a single quantum number label and also gives the nuadber of in­

ternal simple zeros of <t>^t(R) ̂  (R|R)j . Systems fitting into this 

category, and the corresponding (R) (RjR)j, are listed in Table 

3.1. In the collinear atom-infinite square well oscillator system, & 
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Table 3.1. ES systems and corresponding (j>Q(K) or R) that have 

Type A matrix structure 

ES system (j)jR) or Pmi(R|R) 

T-matrlx factorization 

colllnear atom-harmonic 
oscillator 

collinear atom-infinite 
square well oscillator 

2®m! 
H (V&) 
HI 

1/2 
(%) sin (nri-l) = (^) 

1/2X7 

Vy>» 

, nx \mere y = cos 

Degeneracy averaged cross 
section factorization 

atom-diatom rigid rotor 

atom-spherical top 

-f^Pj(cosTf) 

-4 X^(« 
8ir 

= n_.(cos 4>/2) 
Sir' .2 "23 

is the well width and m is the vibrational state (m = 0 is the ground 

state). The rest of the symbols are defined in the previous chapter. 

Note that, except in the atom-spherical top case, the functions 

(R){P (RIR)] are in the form of w^^^ P (x), where P (x) are ortho-
m \ m y m m 

gonal polynomials of order m and w are the corresponding wei^ts, and, 

in particular, P^(x) = 1. Hence, in these systems 
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= c 1 d3W (x) P^,(x) p^(x), (3.1-1) 
o 

where c is a constant. 

To evaluate Eq. 3.1-1, the natural way is to use addition theorem 

to combine any two polynomials 

m'+m 
P .(x) P (x) = ZZZ a. P.(x). (3.1-2) 
™ k= |m'-m| ^ ^ 

Ilsing the orthogonal property of {P^}, has to be in the range of k 

for nonvanishing matrix elements the matrix elements are 

then proportional to Hence, for nonvanishing m^, m' 

and m must obey the triangular inequality, i.e., lie in a rectangular 

region bounded by the counter diagonal connecting the elements m^ = 0, 

m = m' and m^ = m', m = 0 and the diagonals (parallel to the main di­

agonal) satisfying the relations m^ = m±m* (so the boundary of the rec­

tangle is given by = |m±m' |). Furthermore, since Pj^(x) has a non-

0 
zero term proportional to x , when k = m* + m in Eq. 3.1-2 we must have 

that a„i. ^ 0 so m "Mû 

]m'4in,m ̂  (^.1-3) 

Similarly, combining P and P shows that 
m m o 

and combining P and P , shows that 
m st o 
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(both Eqs. 3.1-4 and 3.1-5 also follow from the observation that in 

Eq. 3.1-2 ai , , f 0). Thus, from Eqs. 3.1-3 to 3.1-5 matrix elements 
I m -m] 

of the boundary of the rectangular region are nonzero (but those inside 

still can be). In fact, in all ̂ sterns listed in Table 3.1, except the 

atom-spherical top, all elements in this region are zero except those 

which lie on diagonals satisfying m^ = m + i, where i is even (odd) if 

m' is even (odd), because if m^ + m' + m is odd, then the integrand 

of the integral in Eq. 3.1-1 is odd. 

In the case of atom-spherical top system, P^(R|R) are in the form 

p2m(x) » but Eq. 3.1-1 is still valid since the required wei^t w is 

provided by the weight function (invariant density in group space) of 

the Hurwitz integral (64) (see Eq. 2.4-15). Using the previous analy­

sis , it can be shown that nonvanishing [M(m' ) 3^^ lie in the rectangular 

region defined above and elements of the boundary of the region are non­

zero. Also, all elements in this region are nonzero because mly even 

Chebyshev polynomials of the second kind are involved in Eq. 3.1-1. 

Diagramatically, the structure of H(m') is 

where the rectangular region has nonzero matrix elements on the boundary 

(as well as some inside) and regions with all vanishing elements are 

M(m*) = 
(3.1-6) 
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labeled by 0. From now on, the matrix structure of £q. 3.1-6 is re­

ferred to as Type A structure. As has been shown by Hoffman et al. 

(32), it is convenient to decompose M in the following manner. 

where A(m') is a m' x matrix consisting of the first m' rows of M(m') 

(I.e., rows 0 to m*-l), and B^(M') is an «> x » matrix consisting of the 

remaining rows of M(m*) (i.e., rows m* to <»). The matrix B(m*) is upper 

triangular. If ̂ (m*) is the finite rank approximation to ̂ (m*) consist­

ing of the first N rows and columns, then B^(m') is i^per triangular 

with nonzero diagonal elements. Hence, it Is nonsingular. The limit 

as N-><» of ^(m*) exists componentwise and Is denoted by B ̂ (m*). 

The matrix B \m*) is also upper triangular. Let b^^^ be the matrix 

elements of S.(m*) and let b^^^ be the elements of B \m'). It can be 

-1 easily shown that, b^^ is given by 

M(m*) = 

A(m') 

B(m') 9 
(3.1-7) 

k-1 
(3.1-8) 

This makes generating B \m') particularly easy since previously de­

termined matrix elements of B« ̂  do not change as N increases. 
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In order to invert Eq. 3.1, it is convenient to decompose the comr-

ponents of ̂ (m*) in a manner similar to the decomposition of M(m*) in 

Eq. 3.1-7, namely. 

S(m*) (3.1-9) 

Here ̂  ̂ (m' ) (m' contains the downward m < m' (elastic and upward 

m ̂  m*) transitions in S^(m'). With this definition, Eq. 3.1-1 becomes 

S(m') = 
s(")(m') A(m') 

B(m') 

•S(0). (3.1-10) 

The operator ̂ (m* ) , which may be regarded here as acting on a Banach 

space 5, of vectors ̂  of finite norm, given by 

llslli=llsj (3.1-11) 

If are physical cross sections then i i^| = J since ^ 0. In 

fact, ̂(m') is contact and upper triangular but is not invertlble since 

it can be proved that zero is in the spectrum of ̂ (m*) (67). However, 

from the upper triangular structure of B(m' ), the zero corresponds to 

unnormalized eigenvectors which are not in the space and thus there 

exists a unique unbounded semi-inverse for this operator defined on its 

range. This semi-inverse is just B^ ^(m*). 

Since, by construction, (m') is in the range of B(m*), we have 

from Eq. 3.1-10 that 
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S(0) = . (3.1-12) 

Thus, ̂ (0) is determined by (m') and, since ̂ (0) in turn determines 

^(m' ) , it follows that S_^ ^ (m' ) must be determined by (m* ). These 

are just the consistency conditions discussed by Hoffman et al. (32) 

(m* ) = A(m') • Br\m') • (m*). (3.1-13) 

From the way in lAich ^ (m') was constructed, we can easily see that 

there are m' such relations. 

To establish a factorization relation for an arbitrary input state, 

one just substitutes Eq. 3.1-12 into Eq. 3.1 to yield (32) 

^(m*) = M(m') «B ^(m) * (m) » (3.1-14) 

("4*) —— 
where ̂  (m) has one component for each transition m ̂  m for which m 2 

m. 

It is important to note that the elements of the factorization ma-

-1 — trix M(m*) *5 (m) (though complicated) can each be exactly calculated 

by a finite sum of the product of elements of M(m') and the upper tri­

angular B^ (m). However, except for the case m = 0, each conq>onent in 

(+) — 
^(m* ) is given in terms of an infinite number of components of ̂  (m). 

Of course, for physical scattering information, only a finite number of 

components which are energetically accessible are nonzero. As a practical 

matter many of the energetically allowed pieces of scattering informa­

tion often are not large enough to be of importance in the factorization 

relations. 
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The consistency conditions of Eq. 3.1-13 are in the form of ex­

pressions for the scattering information for downward transitions out 

of the m* state in terns of those of upward transitions. As indicated 

in Eq. 3.1-13, the numbers of consistency relations satisfied by a given 

input state Is equal to the number of singularities associated with its 

wave function (projection operator). Hence, both the analytic and ma­

trix approach give the same number of conslstenqr relations since all 

zeros are simple for these problems. For the systems listed in Table 

3.1, the consistency conditions resulting from the analytic approach 

can be converted easily into the form given in Eq. 3.1-13. This is 

achieved by using Gauss integration for the corresponding orthogonal 

polynomial (see Chapter 2). Finally, we remark that the consistency 

conditions are implicit in the general state factorization relations of 

Eq. 3.1-14 (setting m = m' in Eq. 3.1-14, the consistenqr conditions of 

Eq. 3.1-13 are immediately recovered). 

We now consider some sample calculations. Atom-diatom rigid rotor 

cross section factorization will be used as illustration. First, we 

calculate the factorization on matrix ̂ (j ' |j) for j' = 1, j = 2 in the 

analytic approach. The matrix relates cross sections out of j = 2 (in­

put) state to those out of j' = 1 (predicted) stated. If we drop the 

CCT term in Eq. 2.4-3, then 

[£(112)].^^ --f. |_^dx 

(3.1-15) 
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.th where Pj(x) is the j Legendre polynomial and Q(x) = xPj^(x) Pj(x). 

The integral is clearly zero if the integer + j is even since then 

Ae integral is odd. Equation 3.1-15 ran be rewritten in the form 
1 

• I3„) i dx + Q(.l) f F 

(3.1-16) 

where 

/3 •'0 x^-i 

dx ^ Ar'/S + l 

,5-1 
(3.1-17) 

The matrix elements can be evaluated analytically, and the first 6x6 

diagonal block of G(l|2) is (3.1-18) 

j 

0 
0.6667 
-0.1925F 
(=0.4132) 

0 
0.1111 
40.1283F 
(=0.2801) 

-0.4222 
+0.0321F 

(=-0.3800) 

2 
-0.5774F 
(=1.2397) 

0 1 0 
-0.5556 
+0.2245F 

(—0.2599) 
0 

0 1.6667 0 0 0 0 

0.7778 
+0.8981F 
(=1.9605) 

0 0 0 
0.8642 
-0.3493F 

(=0.4042) 
0 

0 
-1.6667 
+0.6736F 

(=-0.7796) 
0 

1.1111 
-0.4491F 
(=0.5197) 

0 
1.4778 
-0.1123F 

(=1.3299) 

-4.6444 
+0.3528F 

(—4.1798) 
0 0 0 

t 

1.8062 
-0.1372F 
(=1.6255) 

0 
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Here, the column and row labels j and respectively, are given for 

easy reference. Note that Eq. 2.3-17 for [C(l12) and Eq. 2.3-^21 for 

[G(l|2)are satisfied (no F term appears for m = 1 since the inte­

gral of Eq. 3.1-15 is regular in these cases). 

In the matrix approach, the corresponding matrix is 

j 

0 1 2 3 4 5 

0 0 0 0 0.5556 0 -0.3111 

1 0 0 1 0 0.2222 0 

2 0 0 0 1.1111 0 0.2778 

3 0 0 0 0 1.1667 0 

4 0 0 0 0 0 1.2000 

5 0 0 0 0 0 0 

The first two colioms of zeros reflect the fact that only iqmard transi­

tions are used as input data in the matrix approach. Here, the part to 

the right of the dash line is the [M(l) • B ^(2) ] matrix. Although it 

is not that obvious, the factorization matrix G(l|2) in the analytic 

approach (3.1-18) can be converted into the form in the matrix approach 

(3.1-19) by using a CCI derived from the two consistenqr relations sat­

isfied by the transitions out of j = 2 state. 

To predict cross section for the transiti<m j ' -»• j * + A j using 

cross section out of j state, in general, all transitions j ̂  j, such 
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that Aj + j + j is even are needed in the analytic approach (for even 

integrand in Eq. 2.4-3), but only the subset of these for which j >.j + 

Aj are needed in the matrix approach. 

The results of using factorization relations to predict cross sec­

tions and thermal rates for j' = 1 -»• transitions using j = 2 transi­

tions as input data are presented in Tables 3.2 and 3.3, respectively. 

Close coupling (CC) results are used as input data. Table 3.2 contains 

-1 
cross sections for the HCl-He system at a total energy of 772 cm . The 

CC results are taken from Chapman and Green (68). In the second coluan, 

predictions from the matrix approach using inward transitions froa the 

j = 2 state as input are shown. The 2 0 and 2 1 cross sections are 

obtained from the consistency relations of Eq. 3.1-13. It is not very 

surprising that the CC j = 2 input data does not satisfy the consistency 

conditions. The matrix approach results are taken fron Hoffman et al. 

(32). The analytic approach predictions using the Cauchy principal 

value integral régularisation (Eq. 3.1-16) are given In the third column. 

All transitions from the j = 2 state are used as input. Setting F = 0 

in Eq. 3.1-16 (corresponding to absorbing the contributions from the 

singular integral Eq. 3.1-17 into the arbitrary constants of the CCT 

term in Eq. 2.4-3) results in a different factorization relation in the 

analytic approach since the input data does not satisfy the consistency 

conditions (31). The resulting factorization relation is just a particu­

lar case considered by Chang et al. (69) and the results of using this 

factorization relation are presented in the last column of the table. 
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Table 3.2. Comparison of close coiqtling calculated cross sections 
(Â^) for the j' = 1 -»• jp transitions in HCl-He at a total 
^ergy of 772 cm**^, and predicted cross sections using 
j = 2 transitions as input data in the matrix and ana­
lytic approach 

r io CC* 
Matrix 
approach^ 

Analytic 
approach^ 

Analytic 
approach^ 

2 0 0.4748 0.3686 input input 

2 1 3.9340 3.7970 input input 

2 3 5.6717 input input input 

2 4 0.9510 input input input 

2 5 0.0953 input input Input 

2 6 0.0054 input input input 

2 7 0.0001 input input input 

1 2 6.5567 6.3282 6.5567 6.5567 

1 3 1.2934 1.1112 1.3193 1.1938 

1 4 0.1613 0.1144 0.0076 -0.1140 

1 5 0.0131 0.0066 -0.4371 -0.4865 

1 6 0.0006 0.0001 -0.2850 -0.1846 

^ef. 68. 

^Sef. 32. 

^Results from using Cauchy principal value integral regularlzatlon 
(Eq. 3.1-16). 

*Stesults from using Eq. 3.1-16 with F = 0. 
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Table 3.3. Comparison of close coiq>ling calculated thermal rates (in 
units of 10"^" cm^ s~^) for the j' = 1 jo transitions 
in CO-H at 100®K, and predicted thermal rates using j " 2 
transitions as input data in the matrix and analytic 
approach 

j' io CC* 
Matrix 
approach 

Analytic 
approach^ 

Analytic 
approach^ 

2 0 0.5014 0.4675 input input 

2 1 0.8374 0.8176 input input 

2 3 1.2186 input input input 

2 4 1.2103 input input input 

2 5 0.0509 input input input 

2 6 0.0142 input input input 

2 7 0.0060 input input input 

1 2 1.3957 1.3626 1.3957 1.3957 

1 3 1.4550 1.4165 1.4829 1.4428 

1 4 0.0701 0.0631 0.0476 0.0300 

1 5 0.0197 0.0174 -0.1243 -0.1400 

1 6 0.0102 0.0074 -0.0339 -0.0193 

®Ref. 70. 

^Ref. 32. 

^Ttesults from using Cauchy principal value Integral regularization 
(Eg. 3.1-16). 

*Stesults from using Eq. 3.1-16 with F = 0. 
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For cross section 1 -»• 2, both analytic approach predictions agree 

with the CC results. This is just a consequence of microscopic re­

versibility (see previous discussion and Eq. 2.3-24). It is not very 

surprising that the matrix approach does not preserve microscopic re­

versibility in here because cross section 2-»-l is not used as input 

data. For cross section 1^3, both analytic approach predictions are 

better than the matrix approach predictions. For cross sections 1 4, 

5, 6, the analytic approach predictions are unrealistic; negative values 

of cross sections are predicted. The matrix approach is far better in 

these cases. Table 3.3 contains thermal rates for the CO-H systm at 

100"K. The CC results are taken from Green et al. (70) and the matrix 

approach preditions are again taken from Hoffman et al. (32). The re­

sults are qualitatively similar to those discussed above. 

From the results of Tables 3.2 and 3.3, we can conclude that, in 

general, the matrix approach works better than the analytic approach. 

This is due mainly to the difference in structure of the factorization 

matrices. In the matrix approach, to predict transition j' -»• j' + Aj 

using transitions j j, only transitions with j >. Aj are required, but 

in the analytic approach transitions with j < Aj are also required (see 

previous discussion). Note that, because of the tendency of the upward 

transitions out of a given state to diminish with increasing Aj, the 

principal contribution in predicting j * j ' + Aj, for Aj > 0 comes 

from the transition j -»• j + A j in the matrix approach. The transition 

j + j + Aj is roughly about the same size as j' j' + Aj. This makes 

the matrix approach predictions more stable. 
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In the factorization relations of Eq. 3.1-14, consistency conditions 

satisfied by ̂ (m) are implicitly used so that only the upward transitions 

(m) are used as input data. This is not the only possible form of 

the factorizatim in the matrix approach. In general, we could rearrange 

the component(s) of £(m') in Eq. 3.1 such that, for any n satisfying 

0 ̂  n < m', the positions of [S(m')] and [S(m^ ) ] in S(m') are " " 1 1  i n  " M l  

switched. The new M(m') which is compatible to the resulting ̂ (m') still 

has Type A matrix structure. Identical procedures can be used to develop 

the general state factorization relations and consistency conditions. 

The only difference is that now \m*) and ̂ ^"^^(m') do not consist 

of pure downward and upward transitions, respectively. These new fac­

torization relatims and consistency conditions are completely equiva­

lent to those derived before. But lAen input data other than ES de­

rived is used, the new factorization relations result in different pre­

dictions. This flexibility may be useful in in^roving prediction via 

factorization relations. 

3.2. Type B Matrix Structure 

In this section, we consider the structure of the ground state 

factorization matrices M(M') which arise in the ES atom-diatom rigid 

rotor, atom-symmetric/spherical top T-matrix factorizations and in the 

atom-symmetric top cross section (not energy degeneracy averaged) fac­

torization. For the atom-symmetric/spherical top T-matrix factoriza­

tion, we have (30) 



www.manaraa.com

70 

k -ha , 

j 3o j' l 
(3.2-1) 

k-k_ k' 1 o m-m m' o 

Vhen k' = k^ = k = 0, Eq. 3.2-1 reduces to the expression for the 

ground state factorization matrix elements in the atom-diatom rigid 

rotor T-matrix factorization (30). In the atom-symmetric top cross 

section factorization, we have (30-31) 

m'k')]. ̂ = [j,] 
o o 

r i 

k' -k k 

. \2 

(3.2-2) 

In all these three systems, M(H*) has the same matrix structure and so, 

without loss of generality, we can restrict consideration to the struc­

ture of M(j*k'm') in the atom-symmetric/spherical top T-matrlx factori­

zation. The discussion can be easily adapted to the other two systems. 

Not all the k and m are Independent In Eq. 3.2-1. For nonvanish-

Ing 3-j symbols in Eq. 3.2-1, we must have (33) 

k - k  + k ' = r a - m  + m ' = 0  
o o 

(3.2-3) 

(which is just a particular case of the condition in Eq. 2.2-13) and 

j Z max (|k|, |m|), ^ max (|k^|, 1*^1), 

(3.2-4) 

j' Z max (Ik' 1, |m' |) 
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i.e., the absolute value of the magnetic quantum number cannot be 

greater than the rotor state quantum number (for more complete dis­

cussion on the properties of the 3-j s3nnbols, see Chapter 5). Equa­

tion 3.1 reduces to 

^(j'k'm'jAk Am) = M(j'k'm'|Ak Am) • S^OOOjAk Am) (3.2-5) 

where 

Ak = k = k - k' 
o 

Am = m = m — m' 
o 

and 

(3.2-6) 

<3.2-7) 
O "o 

is the T-matrix element for the transition j 'k'm' j k'+Ak m'+Am, and 

[M(j'k'm'|Ak Am)] = (-1)^^' + ̂  ([j^][j'3 [jl)^ 
o 

j jo j* 

Ak -Ak-k' k' 

j jo j' 

Am — Am—m' m' 
(3.2-8) 

In Eq. 3.2-5, ̂ ( | ) is a vector consisting of only physical transi­

tions (i.e., condition of Eq. 3.2-4) must be met). 

Next, we study the structure of the matrix M(j*k'm'|Ak Am). From 

the properties of the 3-j symbols, j*, and j obey the triangular 

inequality. Just using this condition, M(j'k'm'|Ak Am) has Type A 
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structure If all values of j were allowed (with m' in the l.h.s. of 

Eq. 3.1-6 replacing by j'). However, from the conditions of Eq. 3.2-4, 

the column index of M(j'k'm' | Ak Am) starts from 

j = c = max (|Ak|, |Am|) (3.2-9) 

and the row index starts from 

= r = max ([k'+Ak], |m'+Am| ). (3.2-10) 

Diagramatically, the structure of ̂ (j 'k'm' |Ak Am) is 

M(j 'k 'm' jAk Am) = j  

c j*-r j*+r 

j'-c 

j'+c 

(3.2-11) 

where the row and column index, and j, of some points on the edges 

are given. Nonzero matrix elements only occur inside the polygonal re­

gion and regions with all vanishing elements are labeled by 0. The 

diagonals (parallel to the main diagonal) satisfy the relations j = 
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3 ± j'. There may be some zero elements inside the polygonal region, 

but elements on the diagonal, satisfying the relation = ,1 + j*, are 

nonzero. Elements on this diagonal can be evaluated using the relation 

(57) 

31^2 ii+jg 

"i iz "^i"^ 

= (-1) 
31-32 + *14*2 

(2ji) ! (Zjg) ! (ji+j24«i+n»2) • • 
1/2 

(2ji+2j2+l) ! (ii+mi) ! I ' 

(3.2-12) 

which is nonzero for ji 2. 1*11 and 32 — 1*21* matrix structure 

of Eq. 3.2-11 is referred to as Type B structure. (The Type A struc­

ture is, of course, a very important special case.) 

To invert Eq. 3.2-5, we use the same techniques as for Type A 

matrix structure. The matrix M(j'k'm' |Ak Am) is decomposed into the 

form 

M(3'k'm'jAk. Am) = 

/ \ 

\ A(j*k'm' |Ak A*) 

\ B(j'k*m' |Ak Am) 

(3.2-13) 
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lAere A(j 'k'm' | Ak Am) is a (j ' + c - r) x <» matrix consisting of the 

first (j' + c - r) rows of M(j'k'm'|Ak Am) and S(j'k'm'|Ak Am) is an 

09 X 0® matrix consisting of the remaining rows of M(j'k'm'|Ak Am). The 

matrix B(j'k'm'I Ak Am) is upper triangular and nonsingular so the in­

verse B ^(j'k'm*|Ak Am) exists. When r and c are such that the 

counter diagonal at the top left comer of the matrix structure in 

Eq. 3.2-13 vanishes, the inverting procedure described above is still 

applicable. It should now be clear how consistency conditions and 

factorization relations analogous to Eqs. 3.1-13 and 3.1-14 can be 

easily written down. 

We now examine the number of consistency conditions, N , obtained 01 

in the matrix approach. From the way ̂ Aich Â(j*k*m'|Ak Am) was con­

structed, we can easily see that = j' + c - r. The number of con­

sistency conditions resulting from the matrix and analytic approach, 

and satisfied by \ ) (defined in Eq. 3.2-7) in the ES sys­

tems mentioned at the beginning of this section are presented in Table 

3.4. In general, we have that i N^, which is clearly necessary 

since the matrix technique generates all consistency conditions. The 

reason why the two approaches do not agree in the number of consis­

tency conditions is not clear. 

Under certain conditions, = N^. This occurs, for example, 

in the atom^diatom rigid rotor T-matrix factorization, when both m' and 

Am are positive, in the atom-symmetric top nonenergy degeneracy cross 

section factorization, when both k* and Ak are positive, and when Ak = 
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Table 3.4. Numbers of consistency relations resulted in the matrix 
(1^) and analytic (N^) approach satisfied by | ) in 
different ES systems 

ES system | ) 

T-matrix factorization 

Ato^diatom rigid g(j | 

tpSSS^S"'' SCj'fc'm'lAk Am) max(lAk|. |Am|) 

Nonenergy degeneracy 
cross section fac­
torization 

Atom-symmetric top S(j'k'lAk) 
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r  N = j ' + c - r  
nx 

[m'+Am] j' + IAm| - |m*+Am| 

max([k'+Ak(, |m'4Am[) j' +max(jAkj, |Am|) - max([k'+Ak|, jm'+Am|) 

|k'+Ak| j' + [Akl - |k'+Ak| 
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Table 3.4. continued 

N a 

(j' - Jm'l) + 2inax(0, |m' | - |m'+Am|) 

(j' -maxdk'l, Im'l)) + max(0, jk'-m'1 - |k4-Ak-m-Am|) 
+ max(0, |k'4iii*| - |k'+Ak+mfAm|) 

(j' - jk'l) + inax(0, |k'j - |k'+Ak|) 
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Am = 0 in Table 3.4. We have already discussed the latter in Chapter 

2. In this case, there are no nontrivial conditions from the higher 

order zeros at the end points in the analytic approach. Also, in this 

case, the analytic approach consistency conditions can be converted 

easily into the form given in the matrix approach by using a suitable 

form of Gauss integration (see Chapter 2). 

We now give a numerical exanq>le, for the atom-diatom rigid rotor 

T-matrix factorization in ̂ ich the two approaches do not give the same 

number of consistency conditions. Let j' = 2, m' = -1 and m = 2. 

From Table 3.4, we have N = 3 and N = 1. Remember [^(j*m' |Am)]. 
ma 3^ 

(the component of ̂ (j'm'|Am)) is the T-matrix element for the 

transition j'm' -»• m'+Am. The three consistency relations in the 

matrix approach are 

[S(2, -1|2)]^ = - 2.225X [S(2, -ll2)]^ - 1.627 x [S(2, -ll2)]^ 

- 4.115 X [S(2, -l|2)]g + ... 

[S(2, -1|2)]2 = - 2.449 x [S(2, -l|2)]^ - 4.266 x [S.(2, -l!2)]g 

- 6.387 X [S(2, -l|2)]g + . . .  

[1(2, -1|2)]2 = - 1.387 X IS(2, -ll2)]^ - 2.728 x [S(2, -l|2)]^ 

- 3.412 X [1(2, -l|2)]g + ... . 

(3.2-14) 



www.manaraa.com

79 

Note that, the consistency conditions are in two groups. One group 

are satisfied by t^(2, -l|2)]. , with odd j , and the other for even 
^o 

The single consistency condition in the analytic approach is 

- 0.612 X [S(2. + 0.573 x [S(2, -l|2)]3 

- 0.568 X [S(2, -l|2)]g + 0.566 x [£(2, -ll2)]^ 

- 0.565 X [S(2, -l|2)]g + ... = 0, (3.2-15) 

which is satisfied by [^(2, -l|2)]^ , with odd j^. It can be easily 

shown that the two relations in Eq. 3.2-14 that connect [^(2, -l|2)]. , 
^o 

with odd imply Eq. 3.2-15. 

3.3. Tensor Product Matrix Structure 

In this section, we consider the structure of the ground state 

factorization matrices M(M') which are in tensor product form @ 

where M' = and each factor has Type A or Type B structures. 

This kind of matrix structure arises naturally in the two structural 

particles, ES systems (see Eq. 2.2-17) and in the IDS systems (see 

Table 2.1). For simpler notation, we assume M(Mp for s = 1,2, are 

in Type A structure. In this case, are single quantum number 

labels. 

If M(mp are decomposed in the manner given in Eq. 3.1-7, then 

Eq. 3.1 can be rewritten in the form 
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1 u 4(®i) ® 4(®2^ 

= 
â &(m^) • S(00), (3.3-1) 

I(m^) ( 1 A(mp 

S^*^^(m^mp &(m^) ( g &(m^) 

where contains the elements of corresponding to 

transitions for which >. etc. 

From Eq. 3.3-1, it is clear that ̂ (00) is determined by . 

Since ̂ (00) in turn determines ̂ (m^m^), it follows that ̂  ̂ (m^mg), 

(mj^m^) and (m^m^) must all be determined by (m^m^). This 

is just a generalization of the consistency condition (71): 

^(m^m^) = (A(m^) •£~^(m^) Q A(m^) •£~^(m^)) (mj^m^), 

® i) • (3.3-2) 

(mj^m^) = (X® A(mp 'l/^Cm^)) (mj^) , 

where J. is an identity matrix. The general state factorization rela­

tion is (71) 

S(mj[m^) = mrnp •i"^(^) 0 M(mp .l"^(^)) 

(3.3-3) 

Since MCm^) are in Type A structures, consistency conditions resulted 
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from the analytic and matrix approach are equivalent. This will not be 

true for Type B M(m^) structures where consistency conditions and fac­

torization relations analogous to those given in Eqs. 3.3-2 and 3.3-3 

can be easily written down. Sample calculations using the factoriza­

tion relations of Eq. 3.3-3 are given in Chapter 4. 

3.4. General Properties of the Factorization 

Relations and Factorization Matrices 

We remark on some general properties of the factorization rela­

tions and factorization matrices resulting from the matrix approach. 

These properties are analogous to those in the analytic approach. To 

simplify the agreement and notation, we consider exclusively Type Â 

matrix structure. For Type B and tensor product structures, the treat­

ments are similar. 

The factorization relation of Eq. 3.1-14, in terms of ^(m') and 

^^"*'^(m'), is 

^ \m') = A(m') •B~^(m) '(.m) (3.4-1) 

^^"'"^(m*) = B(m') 'B^ ̂ (m) •^^"'"^(m) . (3.4-2) 

It is to be noted that B^(0) = B ^(0) = 1 recovering the ground state 

factorization relation (m = 0). 

It follows directly from 
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= (A(m') «B • (B(m*) * B ^(m)) * (m) 

= (A(m') .B"^(m')) • (3.4-3) 

that if the consistency conditions hold for they then hold 

for any _S(m') predicted from the factorization relation (31). 

Analogous to Eqs. 2.1-8 and 2.3-17, we have 

[M(m') «B ̂ (m)] — = 6 ,. (3.4-4) 
— in HI Ttrm 

Let us define a new matrix ̂ (m' |m) by 

F^(m' |m) = B^(m') • B ^(m) (3.4-5) 

i.e., the part of the factorization matrix that predicts upward transi­

tions (m' ) from (m), then 

F(mjm) = (3.4-6) 

and 

^(m"|m') £(m'Im) = F(m"|m). (3.4-7) 

Using Eq. 3.4-6, we find that Eq. 3.4-2 is just an identity when m' = 

m. 

3.5. Other Matrix Structure 

So far, we have considered Type A, Type B and tensor product forms 

of matrix structures for H(M'). There are other matrix structures, for 



www.manaraa.com

83 

example, in the atom-diatom rigid rotor ES T-matrix factorization where 

real spherical harmonics (72) are chosen as internal wave functions (31) 

and in the atom-symmetric top ES degeneracy averaged cross section fac­

torization. In these two cases, the M(H') matrix structure is more 

complicated. The row and column index, instead of bearing a single 

label as in Type Â and B, now has a double label consisting of rotor 

state and magnetic quantum number. If we arrange the components of 

^(M') and _S(0) in block form where each block consists of all rotor (j) 

states with the same magnetic quantum number, then the corresponding 

M(H') (in block form) has Type A structure and each block is an infinite 

dimensional matrix of Type B structure. It is clear that the tech­

niques discussed in earlier sections can be used to invert the ground 

state factorization relation. First, the block form of M(M') is de­

composed into A(M') and B(M') as in Eq. 3.1-7, where ̂ (M') is an upper 

triangular block matrix. Consistency conditions follow from this pro­

cedure. Next, each block in B(M'), which has Tj^pe B structure, is de­

composed as in Eq. 3.2-13. From this, another set of consistency con­

ditions follows. In the analytic approach, there are also two sets of 

conditions (see Ref.31 and Sec. 2.4.2). The precise connection between 

the consistency conditions In the two approaches is not clear. 
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4. EXTRAPOLATION AND INTERPOLATION OF SCATTERING 

INFORMATION USING FACTORIZATION RELATIONS 

4.1. Atom-Diatom Rigid Rotor 

In the last <diapter, we used general state factorization relations 

and close coupling input data to predict cross sections in atomrdlatom 

rigid rotor systems. Since the input data is not ES derived, the pre­

dictions depend on the input state j. Hoffman et al. (32) in their 

matrix approach study found that there Is a regular variation of the 

predicted values as a function of j (i.e., the curve obtained by "join­

ing" predicted values plotted against j is smooth). If we consider 

cross section j' for >. j', then when j = j* the factorization 

relation of Eq. 3.4-2 guarantees that we obtain the input as the answer 

since 

(see Eqs. 3.4-5 and 3.4-6). This means that the curve for the cross 

section j' ->• passes through the "exact" value (I.e., exactly the in­

put) of this cross section for j = j'. Consequently, cross sections 

can be Interpolated or extrapolated from two or more sets of inputs 

data to a much hl^er accuracy than can be predicted from a single set 

of input data (32). In this section, we examine the interpolation/ex:-

trapolatlon procedure in more detail. 

Predictions of cross sections/thermal rates of transitions j ' 

(4*) 
— predicted 

(4.1-1) 
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using factorization relations in the matrix approach with different in­

put state j are present in Tables 4.1 and 4.2. These tables are an ex­

panded version of those given by Hoffman et al. (32). Table 4.1 contains 

-1 cross sections for the HCl-He system at a total energy of 772 cm . The 

exact close coupling (CC) cross sections given in the first column are 

taken from the work of Chapman and Green (68). The predictions of j ' 

cross sections using input cross sections out of the j = 0 - 5 states 

are given in the second to the seventh column. The j = 0 predictions 

are previously given by Goldflam et al. (26). Table 4.2 contains thermal 

rates for the CO-H system at lOO'K. The exact CC values are taken from 

the work of Green et al. (70) and the j = 0 predictions are previously 

given by Goldflam et al. (26). 

In Figs. 4.1-4, a few typical plots showing the variation of the 

predicted values of cross sections and thermal rates as a function of 

the input state j are presented. In these plots, all of the transi­

tions j' -+ j' + A j with the same positive Aj and different j' are 

groined together. Each curve must pass through the eact values at j = 

j', and this value is indicated by an open circle (o) in the plot. 

For both systems, the predicted values for a given transition vary 

smoothly as a function of j. Clearly, Interpolation or extrapolation 

to obtain better estimate of the cross section/thermal rate is feasible, 

i^ther feature of these plots is that the variation of the predicted 

values of the transition j ' j * + Aj as a function of j for a fixed 

Aj is very similar for different j '. This is more obvious if the pre-
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Table 4.1. Cross sections (A ) for the j' + jg transitions In HCl-He 
at a total energy of 772 cm~^ as obtained from CC calcula­
tions and by using various choices of Y transitions as in­
put data 

— b 
j' io CC* j = o" 2 = 1 j = 2 j = 3 j = 4 j = 5 

0 1 9.8363 input 9.6542 9.3640 8.9822 8.2899 6.8787 
0 2 2.3741 Input 2.1382 1.8431 1.4624 0.9715 0.4254 
0 3 0.3497 input 0.2814 0.2000 0.1134 0.0392 
0 4 0.0370 input 0.0236 0.0119 0.0037 
0 5 0.0024 input 0.0011 0.0002 

1 2 6.5567 6.7074 input 6.3282 6.0369 5.5369 4.5858 
1 3 1.2934 1.4255 input 1.1112 0.8791 0.5829 0.2552 
1 4 0.1613 0.2009 input 0.1144 0.0648 0.0224 
1 5 0.0131 0.0206 input 0.0066 0.0020 
1 6 0.0006 0.0013 input 0.0001 

2 3 5.6717 5.9958 5.8679 input 5.4196 4.9844 4.1273 
2 4 0.9510 1.2306 1.1058 input 0.7530 0.4996 0.2188 
2 5 0.0953 0.1671 0.1343 input 0.0540 0.0187 
2 6 0.0054 0.0168 0.0107 input 0.0017 
2 7 0.0001 0.0011 0.0005 input 

3 4 5.1592 5.7029 5.5826 5.3975 input 4.7464 3.9307 
3 5 0.6972 1.1387 1.0234 0.8803 input 0.4626 0.2026 
3 6 0.0491 0.1519 0.1221 0.0866 input 0.0170 
3 7 0.0015 0.0151 0.0096 0.0048 input 

4 5 4.6141 5.5418 5.4254 5.2461 5.0150 input 3.8215 
4 6 0.4416 1.0866 0.9767 0.8402 0.6655 input 0.1933 
4 7 0.0160 0.1431 0.1150 0.0816 0.0463 input 

5 6 3.7521 5.4398 5.3257 5.1500 4.9235 4.5301 input 
5 7 0.1874 1.0530 0.9465 0.8143 0.6450 0.4280 input 

®Ref. 68. 

^Ref. 26. 
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Table 4.2. Thermal rates (lu units of 10 cm s ) for the j ' j 
transitions in CO-H at 100*^ as obtained from CC calcu- ° 
latloas and by using various choices of y transitions as 
input data 

j'jjj CC® j=0^j = l j = 2 j = 3 j = 4 j = 5 

0 1 1.9976 Input 2.0243 1.9799 1.8123 1.7069 1.6450 
0 2 2.5069 input 2.3996 2.3375 2.2154 2.1054 1.9080 
0 3 0.1142 input 0.1078 0.0996 0.0945 0.0802 
0 4 0.0388 input 0.0344 0.0312 0.0257 
0 5 0.0206 input 0.0187 0.0136 
0 6 0.0016 input 0.0013 
0 7 0.0013 input 

1 2 1.3957 1.3807 input 1.3626 1.2487 1.1723 1.0967 
1 3 1.4550 1.5214 input 1.4165 1.3495 1.2632 1.1448 
1 4 0.0701 0.0746 input 0.0631 0.0540 0.0458 
1 5 0.0197 0.0223 input 0.0174 0.0143 
1 6 0.0102 0.0118 input 0.0074 
1 7 0.0007 0.0009 input 

2 3 1.2186 1.2353 1.2490 input 1.1126 1.0455 0.9870 
2 4 1.2103 1.2998 1.2434 input 1.1460 1.0827 0.9812 
2 5 0.0509 0.0601 0.0561 input 0.0450 0.0382 
2 6 0.0142 0.0181 0.0160 input 0.0117 
2 7 0.0060 0.0094 0.0082 input 

3 4 1.0577 1.1722 1.1853 1.1571 input 0.9941 0.9400 
3 5 1.0606 1.2026 1.1504 1.1200 Input 1.0026 0.9086 
3 6 0.0409 0.0540 0.0506 0.0460 input 0.0347 
3 7 0.0105 0.0162 0.0143 0.0127 input 

4 5 0.9659 1.1382 1.1511 1.1239 1.0276 input 0.9139 
4 6 0.9570 1.1476 1.0978 1.0689 1.0122 input 0.8672 
4 7 0.0327 0.0507 0.0476 0.0432 0.0385 input 

5 6 0.8973 1.1169 1.1297 1.1030 1.0086 0.9480 input 
5 7 0.8406 1.1121 1.0639 1.0358 0-9809 0.9276 input 

^f. 70. 

^Ref. 26. 
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j»=0 

j'=l 

•=3 

5 4 2 3 1 0 

j 

Figure 4.1. Variation of the predicted cross sections 
j  '  ̂  j  '  +  A j  ,  wit h  A j  =  1  and  j  '  = 0 - 5 ,  
as a function of y in the HCl-He system at 
at total energy of 772 cm~l. The exact 
values are indicated by (o), and same nota­
tions are used in Figs. 4.2-4.6 
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Fig. 4.2. Variation of the predicted cross sections j' -*• 
j * + 2 as a function of 7 in the HCl-He system at a 
total energy of 772 cm~l 
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Fig. 4.3. Variation of the predicted thermal rates j ' 
j' + 1 as a fmction of j in the CO-H system 
at 100®K 
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dieted values are scaled in an appropriate way. Let S(j' |Aj | j) be the 

predicted cross section/thermal rate of the transition j ' -»• j ' + Aj using 

j transitions as input data. We scale each j predicton of S(j'|Aj|j) by 

the largest S(j*|Aj|j) for a range of j, i.e.. 

S*(j'|Aj|j) = , (4.1-2) 

j T [sa'iAjlT)] 

and, in particular, the largest predicted value of S(j*|Aj|j) is scaled 

down to one. The scaled j predictons of cross sections for the j* + 

—1 
1 transitions in HCl-He at a total energy of 772 cm are given in Table 

4.3. Die variation of S*(j' |Aj | j) as a function of j for a fixed Aj is 

nearly independent of j*. For other values of Aj» in both HCl-He and 

CD-H systems, results similar to those given in Table 4.3 also hold. 

This striking feature can be easily explained. 

Using Eq. 4.1-1 and the upper triangular nature of F(j' [j), the j 

prediction of the transition j ' -»• j * + Aj is given by 

S(j'|Aj|j) = % [I(j'IT)0 [S(j)L . (4.1-3) 
£=j+Aj ~ 3 X, 

As usual, the matrix and vector indices are referred to rotor states. 

In Eq. 4.1-3 since BjCj ') and B. ̂ (j) are upper triangular, 

[£(j'(remember Aj >0), the diagonal elements of 

£(j' I j) " l,(j') •l~^(j) which are nonzero are simply given by 

[^^j'l^)^jt+Aj,J+Aj ' ̂(^')^j'+Aj,Aj * ̂  (^)lAj,T+Aj' (4.1-4) 
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Table 4.3. Scaled cross sections for the j' j' +1 transitions in 
HCl^He at a total energy of 772 curl using various choices 
of j transitions as Input data 

j' i-
i.
| 

II o
 

j = 1 3 = 2 3 = 3 3 = 4 3 = 5 

0 1 0.981 0.952 0.913 0.843 0.699 

1 1 0.978 0.943 0.900 0.825 0.684 

2 1 0.979 0.946 0.904 0.831 0.688 

3 1 0.979 0.946 0.905 0.832 0.689 

4 1 0.979 0.947 0.905 0.833 0.690 

5 1 0.979 0.947 0.905 0.833 0.690 

v^ere are the diagonal elements on the 

row of B^Cj') and column of B ^(j), respectively. Using Eq. 

4.1-4 and the fact that only elements on the alternate diagonals of 

— —1 — 
f(j ' I j) are nonzero (due to hand-like structure of B(j*) and B^ (j), 

see Chapter 3), Eq. 4.1-3 becomes 

1—_ , (4.1-5) 
A=j+Aj+2 - 3 -t-ûa,*, X, 

I 

where Z means only alternate Z are summed over. The nonvanishing 

matrix elements of F(j ' | j) are roughly in the same order of magnitude. 

If for any j the sequence ^+Aj+4, 

approaches to zero fast enough* the first term of the r.h.s. of Eq. 

4.1-5 will be the dominant contribution to S(j'|Aj|j). In this case. 
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S(j'|Aj|j) is approximately equal to 

Equation 4.1-6 is certainly not a bad approximation for the two systems 

being considered and it can be used to explain the behavior of the Aj 

plots in Figs. 4.1-4 and the figures in Table 4.3. We want to es­

tablish that in Eq. 4.1-2 is nearly independent of j'. Us­

ing Eq. 4.1-6, Eq. 4.1-2 becomes 

sHi • |ij IT) _ (4.1-7) 

The r.h.s. of Eq. 4.1-7 is independent of j* as was to be demonstrated. 

The behavior of the Aj plots is only of formal interest, because to 

generate one S*(j'|Aj|j) plot requires too many CC 

-1 Finally, we consider the CO-He system at a total energy of 400 cm 

(+) — 
which has CC ̂  (j) components that converge to zero slowly. The re­

sults of predicting cross sections using different j transitions input 

data are presented in Table 4.4. The exact CC cross sections given in 

the first colunn are from Green, cited in Ref. 26, and the j = 0 pre­

dictions are taken from Goldflam et al. (26). In Figs. 4.5-6, 

S(j'lAj|j) - j plots for Aj = 1,2 are shown. The variation of 

{Aj (T) as a function of j is not very smooth compared with the two 

previous systems. This Is especially true in the Aj = 1 plot of Fig. 

4.5. In this case, using interpolation/extrapolation to obtain better 
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Table 4.4. Cross sections (A^) for the j' transitions In CO-He at 
a total energy of 400 coT^ as obtained from CC calculations 
and by using various choices of j transitions as input data 

0 1 2.545 input 2.5198 2.5472 2.3701 2.6544 2.9084 
0 2 8.447 input 8.4285 8.4558 8.1927 8.4688 8.5371 
0 3 2.348 input 2.3757 2.2121 2.4417 2.8913 3.0235 
0 4 3.365 input 3.3571 3.1439 3.2496 3.2901 3.2020 
0 5 2.170 input 2.1504 2.3720 2.8244 2.9267 3.0495 
0 6 1.231 input 1.1935 1.2507 1.4476 1.4673 1.4891 
0 7 1.935 input 2.0379 2.1555 2.1163 2.0042 1.9401 
0 8 0.7807 input 0.8124 0.9247 0.8828 0.7627 0.4618 
0 9 1.115 Input 1.0685 1.0221 0.8599 0.5210 
0 10 0.4290 input 0.4362 0.3671 0.2010 
0 11 0.3491 Input 0.3352 0.1914 
0 12 0.1106 input 0.0773 
0 13 0.0485 input 

1 2 2.698 2.703 input 2.6461 2.6266 3.0088 3.2348 
1 3 6.549 6.564 Input 6.4709 6.3599 6.5435 6.5456 
1 4 2.335 2.328 input 2.3423 2.6791 2.9826 3.1138 
1 5 2.416 2.438 input 2.3238 2.4735 2.5051 2.4662 
1 6 2.124 2.087 input 2.2998 2.5281 2.5317 2.5687 
1 7 1.025 1.030 input 1.1086 1.1949 1.1490 1.0191 
1 8 1.593 1.560 input 1.6338 1.5360 1.3157 1.0347 
1 9 0.6378 0.6176 input 0.5644 0.5630 0.4038 0.2445 
1 10 0.7227 0.7538 Input 0.6295 0.4526 0.2742 
1 11 0.2656 0.2778 input 0.1923 0.1053 
1 12 0.1749 0.2054 input 0.0999 
1 13 0.0402 0.0575 input 

2 3 2.837 2.811 2.7971 input 2.9291 3.2506 3.4754 
2 4 5.559 5.606 5.5821 input 5.5130 5.6717 5.6910 
2 5 2.358 2.300 2.3410 input 2.5706 2.7748 2.8484 
2 6 2.052 2.100 2.0974 Input 2.1364 2.1203 1.9867 
2 7 1.933 1.819 1.8211 input 2.0680 1.9715 1.8351 
2 8 0.8966 0.8727 0.8670 input 0.9146 0.8248 0.7581 
2 9 1.236 1.220 1.2470 input 1.1131 0.9802 0.8217 
2 10 0.4789 0.4724 0.4760 Input 0.4195 0.3188 0.1930 
2 11 0.4708 0.5656 0.5262 input 0.3556 0.2155 
2 12 0.1505 0.2037 0.1982 input 0.0824 
2 13 0.0779 0.1542 0.1364 input 

®Itef. 26. 
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Table 4.4. continued 

j '  c e  j  =  0  j  =  l  j = 2  j  =  3  j  =  4  j  =  5  

3 4 
3 5 
3 6 
3 7 
3 8 
3 9 
3 10 
3 11 
3 12 
3 13 

4 5 
4 6 
4 7 
4 8 
4 9 
4 10 
4 11 
4 12 
4 13 

5 6 
5 7 
5 8 
5 9 
5 10 
5 11 
5 12 
5 13 

2.951 
5.099 
2.260 
1.838 
1.693 
0.7646 
0.9581 
0.3620 
0.3092 
0.0714 

2.952 
4.842 
2.111 
1.636 
1.500 
0.6492 
0.7738 
0.2541 
0.1705 

2.892 
4.633 
1.991 
1.479 
1.373 
0.5670 
0.6205 
0.1440 

2.867 
5.181 
2.114 
1.882 
1.540 
0.7332 
1.018 
0.3901 
0.4786 
0.1741 

2.770 
4.907 
1.896 
1.710 
1.361 
0.6475 
0.9114 
0.3502 
0.4316 

2.621 
4.699 
1.748 
1.598 
1.259 
0.6010 
0.8476 
0.3249 

2.8807 
5.1714 
2.1286 
1.8790 
1.5412 
0.7175 
1.0314 
0.3970 
0.4504 
0.1702 

2.7642 
4.8977 
1.9092 
1.6983 
1.3522 
0.6362 
0.9292 
0.3572 
0.4071 

2.6148 
4.6824 
1.7528 
1.5896 
1.2558 
0.5909 
0.8652 
0.3319 

2.9268 
5.1765 
2.1139 
1.8057 
1.6048 
0.7283 
1.0398 
0.4103 
0.4053 
0.1304 

2.7843 
4.8768 
1.8638 
1.6166 
1.4263 
0.6550 
0.9405 
0.3716 
0.3673 

2.6082 
4.6515 
1.7215 
1.5193 
1.3291 
0.6104 
0.8771 
0.3464 

Input 
input 
input 
input 
input 
input 
input 
input 
input 
input 

2.7664 
4.7660 
1.9728 
1.6633 
1.5321 
0.6926 
0.8713 
0.3289 
0.2814 

2.5653 
4.5579 
1.8459 
1.5670 
1.4351 
0.6475 
0.8148 
0.3070 

3.2095 
5.2125 
2.3681 
1.7837 
1.6491 
0.7115 
0.8487 
0.2783 
0.1874 

input 
input 
input 
input 
input 
input 
input 
input 
input 

2.7771 
4.6519 
1.9862 
1.5462 
1.4082 
0.6090 
0.7246 
0.2378 

3.3920 
5.1535 
2.3043 
1.6981 
1.5901 
0.6591 
0.7208 
0.1685 

3.0226 
4.8160 
2.1045 
1.5627 
1.4575 
0.6034 
0.6607 
0.1538 

input 
input 
input 
input 
input 
input 
input 
input 

estimates is not very effective. In the Aj = 2 plot, the variation of 

S(j'|Aj|j) as a function of j is smoother than in the Aj = 1 plot, and 

for higher j', S(j'|Aj(j), with Aj = 2 is nearly constant for different 

j. This may indicate that for higher j ', the transitions j ' j * +2 

are very nearly energy sudden because S(j'{Aj|j) is independent of j in 
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Fig. 4.5. Variation of the predicted cross sections j* -» 
j' + 1 as a function of j in the CO-He system 
as a total energy of 400 cm~^ 
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the ES. Thus, the S(j' [Aj [j) - j plot may be used as a diagnostic 

test on the "suddeness" of the physical system. 

4.2. Diatom-Diatom Rigid Rotors 

Before we discuss the interpolation/extrapolation in these sys­

tems, we give some sample calculations (71) using the factorization 

relations of Eq. 3.3-3 in the matrix approach. They are presented in 

Tables 4.5-8. Tables 4.5-7 contain cross sections of transitions 

^°1^°2 for the para-H^-para-Eg system at total energy of 0.45 eV, 0.55 

eV and 0.60 eV, respectively. In the first column of these tables, 

cross sections generated from the effective potential (EP) method by Zarur 

and Rabitz (73) are given. The predictions of jo2_Jo2 cr®®® ®Gc-

tlws using input EP cross sections out of = 00, 02, 04, 22 and 24 

are given in the second to the sixth columns. For all those energies, we 

find that usually for close to j^j^, the predictions are as good 

as, or better than, the = 00 predictions. There are limitations 

for = 22, 24 predictions since less consonants of the input data 

are available. 

In Table 4.8, cross sections for ortho-Hg-para-Hg system at total 

energy of 2000 cm ̂  are presented. The exact close coupling (CC) and 

the coupled state (CS) cross sections are given in the first and second 

column, respectively. Both of these results are taken from Heil et al. 

(74). The third column contains the two rotor infinite order sudden 

approximation (TRIOS) results of Goldflam and Kouri (29). In general. 
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Table 4.5.^* Çpigiarison of EP cross sections (A^) of transitions 
-1^2 •*•^01^02» para-H2-para-H2 at a total energr 
of 0.45 eV, and predicted cross sections using " 
00, 02, 04, 22 and 24 transitions as input data 

iii2 3O]^^02 ^1^2 = 00 

00 00 4.710(1) input 
00 02 2.14 input 
00 04 1.31(-2) input 
00 22 2.54(-l) input 
00 24 2.82(-3) input 

02 02 4.634(1) 4.772(1) 
02 04 2.45(-l) 1.104 
02 22 1.04 7.338(-2) 
02 24 2.55(-2) 1.314(-1) 
02 44 6.19(-5) 

04 04 4.774(1) 4.766(1) 
04 06 1.38(-2) 9.754(-l) 
04 24 7.33(-l) 6.643(-2) 
04 44 1.78(-3) 

06 06 5.083(1) 4.765(1) 
06 26 2.75(-l) 6.508(-2) 

22 04 1.12(-2) 2.627(-2) 
22 22 4.688(1) 4.774(1) 
22 24 4.40(-l) 1.142 
22 44 2.05(-3) 6.756(-2) 

24 06 2.23(-4) 2.321(-2) 
24 24 4.776(1) 4.768(1) 
24 26 8.82(-3) 1.009 
24 44 1.02(-1) 3.416(-2) 

26 26 5.155(1) 4.767(1) 

44 44 5.061(1) 4.768(1) 

^f. 71. 

^The integers in the parentheses refer to the powers of 10 asso­
ciated with each number. 

^Ref. 73. 
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= 04 = 22 = 24 

input 
input 
input 
input 
input 

4.633(1) 
2.165Crl) 
1.039 

4.633(1) 
1.039 

5.100(-3) 
4.664(1) 
2.523(-l) 
1.313(-2) 

4.508(-3) 
4.662(1) 
2.230(-l) 
5.342(-l) 

4.662(1) 

4.660(1) 

4.774(1) 
1.561(-2) 
7.330(-l) 

input 
input 
input 
input 

4.774(1) 
7.330(-l) 

4.795(1) 
1.561C-2) 

4.795(1) 
1.380(-2) 
3.774(-l) 

4.795(1) 

4.793(1) 

4.688(1) 
4.389(-l) 
1.660(-19) 
3.986(-3) 

4.686(1) 
3.879(-l) 

4.685(1) 

input 
input 
input 
input 

7.046(-4) 
4.686(1) 
3.889(-l) 

4.685(1) 

4.686(1) 

4.770(1) 
9.979 (-3) 
1.983(-1) 

4.770(1) 
8.820(-3) 
1.983(-1) 

4.770(1) 
1.983(-1) 

4.776(1) 
9.980 (-3) 

input 
input 
input 
input 

4.776(1) 

4.776(1) 
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Table 4.6.^ Cosçarlson of EP cross section (Â^) of transitions 
joli02» for para-H2-para-H2 at a total ener^ ̂f 
0.55 eV, and predicted cross sections using 32^2 ~ 00* 
02, 04, 22 and 24 transitions as input data 

^1^2 j02^02 EP^ 31^2 = 00 

00 00 4.59(1) input 
00 02 2.61 input 
00 04 2.43(-2) input 
00 22 3.67(-l) input 
00 24 3.93(-3) Input 

02 02 4.541(1) 4.666(1) 
02 04 3.58(-l) 1.349 
02 22 1.28 1.066(-1) 
02 24 5.16(-2) 1.903(-1) 
02 44 3.00(-4) 

04 04 4.662(1) 4.659(1) 
04 06 4.76(-2) 1.191 
04 24 9.97(-l) 9.628(-2) 
04 44 5.26(-3) 

06 06 4.874(1) 4.658(1) 
06 26 5.54(-l) 9.431(-2) 

22 04 1.94(-2) 3.806(-2) 
22 22 4.572(1) 4.669(1) 
22 24 6.77(-l) 1.403 
22 44 6.89(-3) 9.786(-2) 

24 06 7.27(-4) 3.360(-2) 
24 24 4.649(1) 4.662(1) 
24 26 3.26(-2) 1.239 
24 44 2.18(-1) 4.952(-2) 

26 26 4.893(1) 4.661(1) 

44 44 4.784(1) 4.662(1) 

^f. 71. 

^Ref. 73. 
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^1^2 = 01^2 = 04 diig = 22 = 24 

input 
input 
input 
input 
input 

4.539(1) 
3.164(-1) 
1.277 

4.539(1) 
1.277 

1.032(-2) 
4.578(1) 
3.728(-l) 
2.662(-2) 

9.121(-3) 
4.576(1) 
3.295(-l) 
6.570(-l) 

4.575(1) 

4.572(1) 

4.662(1) 
5.386(-2) 
9.970(-l) 

input 
input 
input 
input 

4.662(1) 
9.970(-l) 

4.691(1) 
5.386(-2) 

4.691(1) 
4.760(-2) 
5.141(-1) 

4.691(1) 

4.688(1) 

4.572(1) 
6.732(-l) 
5.578(-19) 
1.340(-2) 

4.569(1) 
5.950(-l) 

4.568(1) 

input 
input 
input 
input 

2.368(-3) 
4.569(1) 
5.984(-l) 

4.568(1) 

4.569(1) 

4.637(1) 
3.689(-2) 
4.239(-l) 

4.637(1) 
3.260(-2) 
4.240(-l) 

4.637(1) 
4.239(-l) 

4.649(1) 
3.689(-2) 

input 
input 
input 
input 

4.649(1) 

4.648(1) 
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Table 4.7.^ Con^arlsoa of EP cross sections (A^) of transitions j ' 
joijo2» para-H2-para-H2 at a total of 0.60 
eV7 and predicted cross sections using j j_ = 00, 02, 04, 
22 and 24 transitions as input data 

^1^2 j 01^02 EP^ ^1^2 = 00 

00 00 4.518(1) input 
00 02 2.84 input 
00 04 3.09(-2) input 
00 22 4.34C-1) input 
00 24 8.11(-3) input 

02 02 4.487(1) 4.6(1) 
02 04 4.15(-1) 1.469 
02 22 1.40 1.263(-1) 
02 24 6.81(-2) 2.253(-l) 
02 44 5.15(-4) 

04 04 4.617(1) 4.592(1) 
04 06 7.10(-2) 1.297 
04 24 1.12 1.140(-1) 
04 44 7.71(-3) 

06 06 4.807(1) 4.591(1) 
06 26 6.88(-l) 1.117(-1) 

22 04 2.46(-2) 4.506C-2) 
22 22 4.400(1) 4.604(1) 
22 24 7.95(-l) 1.533 
22 44 1.06(-2) 1.159(-1) 

24 06 1.13 (-3) 3.978(-2) 
24 24 4.602(1) 4.596(1) 
24 26 5.46(-2) 1.354 
24 44 2.79(-l) 5.865(-2) 

26 26 4.812(1) 4.594(1) 

44 44 4.688(1) 4.595(1) 

^f. 71. 

^Ref. 73. 
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SJPI = 02 = 04 = 22 3^22 = 24 

input 
input 
input 
input 
input 

4.485(1) 
3.668(-l) 
1.397 

4.485(1) 
1.396 

1.362(-2) 
4.527(1) 
4.346(—1) 
3.516(-2) 

1.204C-2) 
4.525(1) 
3.841(-1) 
7.182(-1) 

4.524(1) 

4.521(1) 

4.617(1) 
8.033(-2) 
1.120 

input 
input 
input 
input 

4.617(1) 
1.120 

4.650(1) 
8.033(-2) 

4.650(1) 
7.100(-2) 
5.780(-l) 

4.649(1) 

4.646(1) 

4.400(1) 
7.891C-1) 
8.581(-19) 
2.061(-2) 

4.396(1) 
6.975C-1) 

4.395(1) 

input 
input 
input 
input 

3.643(-3) 
4.396(1) 
7.027(-l) 

4.395(1) 

4.396(1) 

4.587(1) 
6.178(-2) 
5.425(-l) 

4.587(1) 
5.460(-2) 
5.425(-l) 

4.586(1) 
5.425(-l) 

4.602(1) 
6.178(-2) 

input 
input 
input 
input 

4.602(1) 

4.601(1) 



www.manaraa.com

106 

Table 4.8. Comparison of CC, CS and TRIOS cross sections (A ) for 
transitions joijo2» for ortho-H2-para-H2 at a total 
energy of 2000 and predicted cross sections using 
YjTg 01* 21 and 03 transitions as input data 

joijo2 CC^ CS^ TRIOS^ ^1^2=01 ^1^2=03 jl32-21 

01 01 4.81(1) 4.81(1) input input 4.970(1) 4.928(1) 
01 03 2.4(-l) 2.3(-l) input input 2.0(-3) 1.500(-1) 
01 05 1.6(-5) 1.3(-5) input input 0.000 
01 21 7.6(-l) 7.6(-l) input input 5.000(-l) 7.39(-2) 
01 23 1.4(-2) 1.4(-2) input input 
01 41 l.l(-3) l.l(-3) input input 

03 03 4.97(1) 5.00(1) 4.80(1) 4.805(1) input 4.925(1) 
03 05 1.6(-3) 1.5(-3) 1.86(-2) 1.905(-1) input 1.190(-1) 
03 23 5.0(-l) 4.9(-l) 7.51(-1) 7.569(-l) input 7.39(-2) 
03 41 9.8(-4) 1.04(-3) 0.0000 0.0000 input 

21 03 4.0 (-2) 3.9(-2) 1.4(-2) 2.8(-3) input 
21 05 6.0(-7) 7.0(-6) 0.0000 input 
21 21 4.93(1) 4.94(1) 4.83(1) 4.832(1) 4.984(1) input 
21 23 1.5(-1) 1.5(-1) 2.44(-l) 2.440(-l) 2.0(-3) input 
21 41 3.8(-2) 3.7(-2) 3.91(-1) 3.911(-1) 2.571(-1) input 

23 05 2.8(-4) 4.0(-4) l.l(-2) 2.2(-3) 
23 23 5.16(1) 5.19(1) 4.82(1) 4.826(1) 4.983(1) 4.927(1) 
23 41 3.4(-2) 3.9(-2) 2.0(-3) 3.1(-3) 

h(ef. 71. 

^Ref. 74. 

'itef. 29. 
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TRIOS predictions are just predictions using the ground state factoriza­

tion relations. In the ortho-Hgpara-Hg system, the lowest rotor state 

cannot equal 00 but rather 01. To determine the fictitious parameters 

[^(00)required in the TRIOS calculations, Goldflam and Kouri (29) 

assumed [£(00) are nonzero for ^ 4 and then treated the 

ground state factorization relations as a system of simultaneous equa­

tions. The values of [S(00)with equal to 00, 02, 20, 04, 

40 and 22 are then fixed by inverting these equations using the CS cross 

sections of transitions 01 01, 03, 05, 21, 23 and 41. Consequently, 

their calculations may be regarded as an unsystematic version of the 

general factorization procedure described in the matrix approach with 

the choice = 01 as input data. The predictions of joiio2 

cross sections using input CC cross sections out of = 01, 03 and 

21 are given in the fourth to sixth columns. The TRIOS predictions are 

very close to the = 01 predictions. This is expected since as 

mentioned above the TRIOS results are essentially generated from the CS 

cross sections, lAich agree fairly well with the CC cross sections, out 

of the 01 state. 

As in the atom-diatom system, interpolating and extrapolating values 

for a given cross section obtained from several sets of input data to 

get an is^roved estimate is possible as shown below. (The values for 

a given cross section obtained from input cross sections out of the 

state are regarded as lying on a surface above the plane.) If 

we consider cross section for the transition jo]^jo2 joi Z 
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jgg > jg, then when = j^jg, the factorization relation of Eq. 

3.3-3 guarantees that we obtain the input as the answer since 

^(j^jPpredicted ̂  

= (B(jp 

= (4.2-1) 

This means that the above mentioned surface for cross section 

joj^jo2 P®®®®® through the "exact" value (i.e., exactly the input) of 

this cross section for This allows for interpolation or 

extrapolation from other points to obtain an improved estimate. Because 

of the higher dimension and nonlinear nature of the surface, more in­

put data sets are required for effective interpolation or extrapolation 

than in the atom-diatom analog. If lots of data are available, inter­

polation/extrapolation can be done efficiently using standard techniques 

such as cubic spline fitting (75-76). The procedure is most efficient 

where the input data points are collinear with jin the 

plane. We give an example of this kind to conclude the chapter. In 

Fig. 4.7, quadratic fitting is used to extrapolate the 06 -*• 06 cross 

section from = 00, 02 and 04 predictions for the para-Hg-para-Hg 

system at a total energy of 0.55 eV. The data are taken from Table 

4.6. The estimated result of 50.27 is only 3% off the EP result 

of 48.74 Â2. 
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Figure 4.7. Extrapolating the 06 06 section from 
jlj2 = 00 , 02 , 04 predictions in para-
H2-para-H2 system at a total energy of 
0.55 eV 
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5. ORTHOGONAL APPROACH TO FACTORIZATION 

In Chapter 2 and 3, we considered factorization via the analytic 

anH matrix approaches. In this chapter, we will consider a third ap­

proach, the orthogonal approach. The coefficients in the ground state 

factorization relations are first written in terms of 3-j symbols. 

Here, procedures based on the orthogonality properties of the 3-j sym­

bols are used to invert these relations and derive the ground state 

factorization relations. Hoffman et al. (32) have derived factoriza­

tions for the ES and lOS T-matrices in the atom-diatom rigid rotor 

system using this approach. Two forms of factorization relations re­

sulted. They differ in one very important aspect. Namely, one re­

duces to an identity when the input state is also the predicted state 

and the other does not. 

The orthogonal approach in T-matrix factorization has been ex­

tended to the diatom-diatom rigid rotors system by Chan et al. (71). 

Results similar to the atom^diatom rigid rotor system are obtained. In 

this chapter, we extend this approach to more general systems. First, 

we summarize the symmetry and the orthogonality properties of the 3-j 

symbols needed. 

5.1. Properties of the 3-j Symbols (33) 

(1) Symmetry properties 

The 3-j symbols have the following symmetry properties 

ji i2 33 II ^n 

,®1 °2 °3, 
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Ill 

when (k, I, n) is an even permutation of (1, 2, 3) and 

Jl ̂ 2 ̂ 3 

°1 ®2 ®3 
= (-1) 

31+32^3 in 

"k "a *n 

(5.1-2) 

when (k, Z, n) is an odd permutation of (1, 2, 3), 

It is also true that 

'h h ̂ 3 

°1 ®2 ™3 
= (-1) 

Jl+jz+Js 3l Jg J3 

^ -*2 -*3 
(5.1-3) 

and in particular, when all m values equal to zero, the 3-j 

symbol vanishes uness + j2 + jg is even. We also have the 

condition 

^1 ̂ 2 ̂ 3 

m^ mg m^ 
= 0 unless 

m ,^I i j^, for i = 1, 2, 3, 

m^ + mg + mg = 0, and 

and obey the triangular inequality. (5.1-4) 

(2) Orthogonality properties 

The 3-j symbols satisfy two orthogonality relations 

[jq] 

^3^3 

jl 32 33 

i°l ®2 °3 
jl 32 33 

m^m' «3 
= 5 , S , 
°1^ % (5.1-5) 
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and 

I 
*1*2 

[jg] 
3l 32 ̂ 3 h h 

i*l°2»3 

where the notation, [n] = 2n + 1, for integer or half-integer 

n is used. Since the m's must sum to zero, the left hand side 

of Eq. 5.1-6 is easily reduced to a single sum, but it has 

formal advantages as written. 

(3) Special 3-j symbol 

A special formula, which will be useful later, is 

Jl 0\ 

m^ 0 
= (-1) ^ (0,1) • (5.1-7) 

Finally, we remark that the 3-j symbols and the related 6-j and 

9-j symbols can be computed efficiently and accurately using the al­

gorithms developed by Schulten and Gordon (77). 

5.2. Applications 

In the following sections we will derive the general state fac­

torization relations for the T-matrix in atomr-diatom rigid rotor and 

atom-symmetric/spherical top systems. As usual for the CS and lOS 

approximation, a spherical wave basis is used for the relative transla-

tional motion. So far, we have considered only the uncoupled repre­

sentation with unspecified quantization axis for the T-matrix elements. 
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Sometimes, it is convenient to consider the coupled representation. 

There is more than one way to couple two or more sets of angular momen­

tum quantum numbers ; each results in a different representation for the 

T-matrix elements. The ground state factorization relation involves 

specific 3-j symbols for each representation. The procedure used in 

inverting the ground state factorization relation depends on the 3-j 

syn6ols involved. Here, we consider mainly the uncoupled representa­

tion. An analogous procedure is easily adapted for other representa­

tions. 

5.2.1. Atom-diatom rigid rotor 

We first consider the factorization of the ES T-matrix elements 

<j^m^|T|j'm'>. Note that this representation is different from that 

considered by Hoffman et al. (32). The ground state factorization re­

lations are (30) 

m 
-1) "([jj[j'][j]) 

j io j io 3*' 

0 0 0 m -m m' o 

<jm|T|00>. (5.2-1) 

Equation 5.2-1 can be inverted to obtain <jm|T|00> by using the same 

procedures of Hoffman et al. (32). First, we multiply both sides of 

Eq. 5.2-1 by (-1) ̂([j])^ ^ î | and sum over m^ and m' using Eq. 
\m -mQ m'J 

5.1-6, to yield 
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I <-
m m o 

= ([i*] []']) = 

î jo 3' 

m —m m o 

3 jo j' 

0 0 0 
<jm|T|00>. 

Next, we multiply both sides of Eq. 5.2-2 by 

over using Eq. 5.1-5, to obtain 

3 3o j' 

0 0 0 

(5.2-2) 

and sum 

I 2. <-
m 

1) 

]o 

[j,] CiV [j,] CiV l 'o j' 
[j'] [0 0 0 m —ni m* o 

X <j^m^|T|j*m'> = <jm|l|00>. (5.2-3) 

If we set j = 0 in Eq. 5.2-3 and make use of Eq. 5.1-7, we find that 

(5.2-4) = <00|T|00>, 
m 

which is a statement of the constancy of the degeneracy averaged, elas­

tic T-matrix elements. This relation is analogous to that obtained by 

Hoffman et al. (32) in another representation. 

If we substitute Eq. 5.2-3 into Eq. 5.2-1, we immediately obtain 

the factorization relation 

2 (-1)°*°° I Ù1 
jm jmm \ [j] j 

j jo 3 joj'l 5 j j \ 

0 0 0 1 m —m m* / o / 0 0 0 ) 

j j j , , , 
_ Œ>. 

m —m m [ 

(5.2-5) 
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Using the condition given in Eq. 5.1-4, we can carry out two m summa­

tions and hence write Eq. 5.2-5 in the matrix notation 

[T(j'|Am)], , = m 
[j] 
^ [F ̂  (Wljy [T(j|Am)]j-

where 

(5.2-6) 

Am = m^ — m' = m — m. (5.2-7) 

and 

[T(j'|Am)]j = <j^Am + m'1t| j'm'> 

[li til 

'3 j. J' 

0 0 0 

j 2^ j' 

Am —m*—Am m' 

3 3 3 

0 0 0 

3 j 3 

Am —m—Am m 

(5.2-8) 

(5.2-9) 

Setting j = 0 in Eq. 5.2-6, we recover Eq. 5.2-1. When 3=3', Fi,(Am) 

is not the unit matrix. 

In the analytic approach, if we use the same notation as in Eq. 

5.2-6 , the factorization relations are 

[T(3'|W], = 

I [A(j'm*lj m)]j j [T(j|Am)] - . (5.2-10) 3® 
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Hence, the factorization relations of Eq. 5.2-6 and Eq. 5.2-10 are re­

lated via 

j' 
- T = i"W (AW'"' 13 • 3 (5-2-11) 

m 

where 

I *m = 1" 

m 

(5.2-12) 

Exactly lAat is the appropriate choice of CCT terms in A( I ) in the 

above equation is not clear. 

Equation 5.2-6 is a perfectly valid factorization relation in the 

ES approximation, but it suffers from the fact that it is not simply an 

identity when j = j' for arbitrary Am. (This is possible because, in 

general, consistency conditions provide linear dependency among the in­

put data.) This makes the interpolation/extrapolation of the T-matrix 

elements from two or more sets of data impossible (see Chapter 4). 

This deficiency can be easily remedied using the same technique 

employed by Hoffman et al. (32). Note that 

<jm|T|On> = <jm|TjOO> 6. nO 
(5.2-13) 

and hence that Eq. 5.2-1 can also be written in the form 

^m^|T|j'm'> =ZZ (-l)*°([j.][j'][j])^^ <j 
jm n 

j jo y ]  j Jo 

n 0 -n m —m m* 
1 J o , 

<jm|T|On>. (5.2-14) 
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Here the index, n, has been introduced in the first 3-j symbol 

unsynmetrically with respect to interchanged and j'. To derive 

the general state factorization of Eq. 5.2-14, we use a procedure 

analogous to that described before. We multiply both sides of Eq. 5.2-
m 

14 by (-1) ([j]) ® I m m*j and sum over m^ and m', then multiply by 

and sum on j^, to obtain 

SI 
:o "^o® 

m 
(-1) 

[Joim] 
% 

j 3o 3, 3'^ 

[j'l in'O -n' m -m m* \ 0 1 

X <j^m^|T| j'm'> = <jm|T|On'>. (5.2-15) 

Substituting Eq. 5.2-15 into Eq. 5.2-14 and doing two m summations, we 

have 

[T(j'lAni)], = 
Jo® 

lill 
[j] 
X [= T m' ,jm |Am)].-

(5.2-16) 

where 

[G, ' (Am)], = X (-] .m+m' J, _ 
•j^m-,jm ' ([j^Hjl) ̂[j] 

j jo j' 

n 0 -n 

2  3 ^  ] '  

Am —m'—Am m* 

2 2 3 

n 0 -n 

3 3 3 

Am —m—Am m 
(5.2-17) 

The factorization relation of Eq. 5.2-16 has the property that is an 

identity when j = j because G ̂ , (Am) is the unit matrix. The &-ma-

trices, further, have the property that (32) 
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G ̂  (Am) • G ^ (Am) = G £ (Am) (5.2-18) 
~ 3 ~ T  ~  i 

if j is greater than or equal to either j' or j. This result is similar 
j' 

to those obtained in the analytic and matrix approaches. Since 6 ̂,(Am) 

is a unit matrix, this allows for the possibility of interpolation/ex­

trapolation of T-matrix elements from two or more sets of data. An 

equation similar to Eq. 5.2-11 also holds. 

The treatment of the CS factorization in any system for T-matrix 

elements <&X|T|&'X'>, where the state labels are for the relative orbit-

angular momentum states, is identical to that for the ES atom-diatom 

V 
rigid rotor system. The factorization matrix elements ^ (AA)]*^^, ̂  

can be obtained from the ES factorization matrix elements 
; t 

[F ̂  (Am)]. , by replacing j's with Jl's and m*s with X's and multi-
— J 3o® _ 
plying by The phase factor originates from the phase fac-

0 

tor in {i Yjj^j^(R)} given in Table 2.1. Factorization relations analo­

gous to those given in Eq. 5.2-16 can be obtained after using the fact 

that <&X|T|Ou> = <&X|T|00> ô q̂. The corresponding matrix elements 

[G — (AX)]^ yj! ^ can be obtained from the ES factorization matrix 

elements [G (Am)] by replacing j's with 2's and m's with X's 

and multiplying by i^ 

In the lOS, the factorization matrices are in the tensor product 

form of F i (Am) @ F il (AX) and G 2. (Am) ® G 4 (AX). But, if we use ro-
— j — 2 — 2 ~ ̂  

tational invariance and start from the ground state factorization re­

lation of the form 
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X_+m 
= Y (-1)"°™° 

La 
([jj[j'][y U'D" [L] 

L jo L jo j'l 'L Jl o 

0 0 0 a ^o m' 
0 0 0 

L Z Z'\ o 

—0 —X X' 
<LaL-a|TlOOOO> 

(5.2-19) 

(see Eq. 2.2-15), then the factorization relation 

[T(j'&'|Am)]j = 

V' 

j: [TU 

&oX*,AX ZT 

(5.2-20) 

[j][&] 1 jffl 

£k 

is obtained. 

Here 

[T(jlAm)]. = <j^ Antfm' Z^ X'-6m|T| j 'm'&'X'> 

V' 

(5.2-21) 

and 

i 
m = I 

V ,ix ^ 

.Z* —Z^—Z+Z m+m'+X+X' 
(-1) 

X ([j^][y uim)^ [L]^ 

1 jo j' 

0 0 0 

L  2 ,  A t 
o 

Am —m'—Am m* 

1 & &' 
o 

0 0 0 

(5.2-22) 

L 2 &' o 

-Am Amr-X' X' 

L 3 j 

0 0 0 

L j j 

Am -m—Am m 

L  Z  Z  

0 0 0 

L Z Z 

—Am Amr-X X 
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Setting j = & = 0 in Eq. 5.2-20, we recover Eq. 5.2-19. As in the ES, 

— — i'S,' 
if we set j=j', we find that ^,£,(Ani) is not the unit matrix. 

The deficiency can be remedied using 

<jmAX|T|OnOn> = <jmJlX 1T10000> Ô^q (5.2-23) 

and introducing extra n,ii sums analogous to the earlier ES treatments. 

The resulting factorization matrix elements are 

. £ ' +X+X ' 

,JIX 

X ([j^] [&^][i][2])^ IL]2 

1 jo L 3, 3'1 L Z z\ 
0 

n 0 -n ^ -m'—Am m' 0 -y 

Z Z' o 

\ -Am Am-X' X* 

L  3  3  

n 0 -n 

L j 3 

Am —mrAm m 

I, z z 

y 0 -y j 

Z Z 

—Am Amr-X X 

(5.2-24) 

When 3=3' and & = 2', jG , ,(Am) is the unit matrix. 
Z 

In Appendix C, the factorizations for the T-matrix elements in 

the representation considered by Hoffman et al. (32) are briefly dis­

cussed. Here, factorization relations, which give an identity when the 

input and predicted states are the same, do net preserve certain symme­

try. 
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5.2.2. Atom-symmetric and atom-spherical tops 

The ground state ES T-matrix factorization relations in the atom-

symmetric and atom-spherical tops are (30) 

<joVo 1^1 j ^ 
jkm 

3  Jo j' 

k -k k' O 

'j io j' 

m -m m o 

<jkm|T|000>. (5.2-25) 

Â procedure analogous to that discussed in the atom-diatom system can 

be used to derive the general factorization relations. We multiply 
m 

both sides of Eq. 5.2-25 by (-1) °([j])^ 
3 3o j' 

and sum over m and o m -Œq m 

m' using Eq. 5.1-6, then, multiply both sides of the resulting equation 

by (-l)'^o ([jJ) 
h  3  3 o  j '  

obtain 

II (-
Jo''» "o"' 

k -ko k 
1 and sum over j and k using Eq. 5.1-5 to 

k n i i j  
% 5 j, j'l 

[j'] k -k k' o 

j jo j' 

m —m m o 

X <j^k^m^|T|j'k*m'> = <jkm|T|000>. (5.2-26) 

As in the atom-diatom system, if we set j = 0 in Eq. 5.2-26 and make 

use of Eq. 5.1-7, we have 

77^ ̂  <j'k'm' |T|jkm> = < 
" ̂ k'm' 

000|T|000>, (5.2-27) 

which is a statement of the constancy of the degeneracy averaged, elas­

tic T-matrix elements. 
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If we substitute Eq. 5.2-26 into Eq. 5.2-25, we immediately obtain 

the factorization relation 

m„lT|j'k'm'> = %% (-1) 
jkm jk 

m+m 4k-Hc o o 

ij] 
[j] 

nsn 

j 3' 

k -k k' o 

'5 jo j' 

m —m m o 

3 3 3 

k -k k 

3 3 3 

ïïi —m m 

<jkm|T|j k m>. 

(5.2-28) 

We can now do four k and m summations to obtain a result which can be 

written in matrix notation as 

[TCj'k'lAkAm)]. 

= m. 

[j] 
™ k|AkAm)]j-

jm 

(5.2-29) 

where 

Ak = k - k' 
o 

k - k. Am = m^ - im' = m - m. (5.2-30) 

[T(j'k'lAkAm)]. , = <j Ak+k' Am+m'1 j'k'm'> 
o 

(5.2-31) 

and 
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mha'+k+k' [j] 

3 jo 3*1 

\Ak -Ak-k' k' 

j j j j j j 

,Ak -k-Ak k jûjn —in—Ani m 

J 3o : 

Am —m'-Am m' 

(5.2-32) 

Setting j = 0 in Eq. 5.2-32, we recover Eq. 5.2-25. If we set j = j', 

i 'k' 
k = k*, we find that F,, , (AkAm) is not the unit matrix. 

~j k 

If we change the role of k and m in the above procedure, we obtain 

another factorization relation 

[T(j'm'[AkAm)] ,, 

J. un I [j] 
(5.2-33) 

i 'in* and [T(3'm'|AkAm)]4 k» and [ri _ (AkAm)]4 k' .Ik are given by expressions 
•Jq ] in 

analogous to Eq. 5.2-31 and Eq. 5.2-32, respectively. 

In the analytic approach, if we use the same notation as in Eq. 

5.2-29, the factorization relations are 

[T(j'k'|AkAm)]j 

= I [A(j 'k'm' |j k , j Ak+k /Wto * k|AkAm)]j- . 

(5.2-34) 
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Hence, the factorization relations of Eq. 5.2-29 and Eq. 5.2-34 are 

related via 

(5.2-35) 
m 

where 

I a'- = 1. (5.2-36) 
_ m 
m 

Again, the choice of the CCT terms necessary to obtain A( [ ) in the 

above equation is not clear. 

Finally, for two structured particles system, the ground state fac­

torization matrices are in tensor product form. Procedures analogous 

to those stated so far can be used to "invert" the 3-j symbols asso­

ciated with each particle in the ground state relations. The resulting 

general state factorization matrices are also in tensor product form. 

Since the arguments required to do this are exactly parallel to those 

already given, we will not discuss the matter any further. 
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6. FACTORIZATION OF PHENOMENOLOGICAL CROSS SECTIONS 

FOR ATOM-DIATOM SYSTEMS 

In this chapter, we will consider the general factorization of the 

phenomenological cross sections for atom-diatom systems. The exact (CC) 

egressions of the phenomenological cross sections have been given pre­

viously in terms of the reduced S-matrix elements in the translational-

intemal coupling scheme (45) and in the total angular momentum (or to­

tal-J) coiq>ling scheme (46). For the computation of the exact CC S/T-

matrix elements, the total-J cotq>ling scheme is most appropriate since 

the CC equations explicitly make use of angular momentum conservation 

(58). Hence, the development of the various sudden approximations stress 

mainly this coupling scheme (24). Traditionally, the translational-

intemal coupling scheme is used in the distorted wave Bom approxima­

tion (INBA) (78-79). The ES, CS and lOS approximations to the es^ressions 

of the phenomenological cross sections have been considered in both 

coi^ling schemes (46-53). It turns out that the ground state factoriza­

tions of the phenomenological cross sections in the ES and lOS are readi- . 

ly obtained in the translational-intemal coupling scheme (51,53). This 

is due to the fact that it is natural to separate the translational 

and internal parts in the ES and lOS, and Ae translational-intemal 

coupling scheme is compatible with the separation. In this chapter, we 

will develop the general factorization starting from the ground state 

factorization using the orthwgal and the matrix approach. 
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6.1. Properties of the 6-j and 9-j Symbols 

Ihe properties of the 3-j symbols were briefly discussed in the 

last chapter. We now consider briefly the 6-j and 9-j symbols. For 

further discussion of this subject, the reader is referred to Ref. 33. 

(1) General considerations 

The 6-j symbol 

jl 32 ^31 

^1 ̂ 2 ̂ 3I 

is invariant on Interchange of any two columns or of any two 

members in the bottom row with the corresponding two members 

in the top row. The symbol is automatically zero unless each 

of the four triads (j^ jg jg), (j^ ^3) » ^2 ̂ 3^ 

^2 jg) satisfies the triangular inequality. 

The 6-j symbols satisfy the orthogonality relation (33) 

I W[j"] 
& 

il 
* 

^2 
j' 

' * 

h h 
s. 

jl ̂ 2 

£-1 ^2 ̂  
~ ̂ j'j" 

(6.1-1) 

The 9-j symbol 

jll ̂ 12 ̂ 13 

^21 ̂ 22 ̂ 23 

^31 ̂ 32 ̂ 33 

has 72 symmetry operations which either leave its value unchanged 
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or changed only by a sign. An even permutation of rows or 

columns, or a reflection about either diagonal, leaves the 

symbol Invariant. An odd permutation of rows or columns 

g 
multiplies the symbol by (-1) , where S is the sum of all 

nine parameters. 

The 9-j symbols satisfy the orthogonality relation (33) 

IÂ B S A B S 

I [S][t][i][kl D t WC D tV = 6^, ôj^, . 
I i k E 1 i' E ' 

(6.1-2) 

Useful formula 

Two special formulas which will be used quite frequently are 

jl ̂ 2 0 
> = 

and 

(-1) ̂  ^ ([3,][jJ) = 6: 1 5. 1 
J. 4 3^32 J 4]. 

-h 

(6.1-3) 

^11 ̂ 12 ̂ 13 

^21 ̂ 22 ̂ 23 ̂  ̂  

^31 ̂ 32 0 

jl2'*'i2]^j 13*^31 
([jljlLigl]) 

-% 

^11 ̂ 12 ̂ 131 
5. . 6 ,  .  

322 jzi isil '13^:3 ^31)32 

(6.1-4) 

Another formula which will be used later is 
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ji jj. 

4 il \ 

'3f *f Jf, 

X /ii&i Ji 

jf 4 I 

n 4 «̂ 1 

I (-1) [H] 
H 

[K K' H) p S ® 

k y. h. 

'^f ^fi 

K Kj^H 

'^i 4 

^f 

where 

(6.1-5) 

S = Li + Lf-K' +K. 2K^ + H + K + j^ + + S,^ + £• . 

(6.1-6) 

The proof of this formula Is given in Appendix D. 

6.2. The S-Matrix in Different Coupling Schemes 

To describe the dynamic of an atom^diatom collision, we need four 

sets of angular momentum quantum numbers — namely the rotational angular 

momentum quantum numbers j'm' of the diatom before and after the 

collision, and the relative orbital angular momentum quantum numbers 

2,'X' before and Si X after the collision. There are three possible ways o o 

of coigling these four ̂ gular momenta into pairs. We only consider the 
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total-J and translaticmal-iaternal coupling scheme. Various conventions 

are used by different authors to define the S-matrlx elements. These 

differ from one another by phase factors. In the following, we follow 

mainly the treatment of Coombe and Snider (35) except the "standard phase" 

conventl(m (57) is used. 

We first consider the total-J (Tot-J) coupling scheme. The total 

angular momentum (J) is conserved in the collision 

+ = J i'+r = J. (6.2-1) 

Using this vector coupling scheme and rotational invariance of the S-

operator, the reduced S-matrix elements S^Xj&|j'&') in the total-J cou­

pling scheme are defined by (35) 

<jo™oVolslj'm'A'X'> = (-1)^°^° I (-1)-^^ [J] 
JM 

jo ^o"^ 

—m —X M o o 

J j' r 

—M m' X' 

(6.2-2) 

The "factorization" of the magnetic quantum number dependence on the r.h.s 

of Eq. 6.2-2 follows from the Wigner-Edeart .theorem (57). The Inverse re­

lation is (35) 

j +£ r m_+X_ T ] -RX, P m -TA V Tj-nr 
S'^(j £Jj'Jl') » (-1) ° ® I (-1) o o 2, (-1)"^+^ 

m X N o o 
m'X' 

(6.2-3) 

jo 

-®o "^o 

J j' £' 

-M m* X' 
<jo"oVols|jV£'X'> . 
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An alternative coupling scheme involves the change in internal and 

relative translational angular momenta 

(6.2-4) 

Tie reduced S-matrix elements SCj^A^jLl j'Jl'), in this so-called transla-

tional-intemal (Tr-Int) coupling scheme, are defined by (35) 

j +m +A +X 1 Tj^ L. 
° (-1) ° o o o ([j'lU'D^ I (-1) ([L]r 

La 

jo 

—m ~0 la 
o 

I I -L V o 

-X a X' o 

S(j^A^|l|j'&') . 

(6.2-5) 

The inverse relation is (35) 

. . j +& 
S(joitolLlj'r) = (-1) 

1^ m +X L+CJ 1 
°  °  ([j'] [ & ' ] ) "  Ï  (-1) ® ° I (-1) iiur 

* 

m'X' 

'  jo ^ ' Ao L 

—01 —Q Jl' -A a X' 
I  O o 

<j  m 2 X |sl j'm'£'X*> .  
o o o o' ' 

(6.2-6) 

The reduced S-matrix in the two coupling schemes are related by (35) 

S(j/olHj'^'> = 
mjh V , ,/'+jo+™ 

I (-1) [J] 

Wo ̂  J 

r j' L 
(6.2-7) 
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and 

I (-1) 
L 

Jl'+j +L+J 
([!]) 

• S(jo&o|Ltj'&') . (6.2-8) 
&' j* L 

We now consider the factorization of S"^(j^£,^l j'A') and S(j^Jl^lL| j'£') 

in the ES and lOS approximation and, in particular, the ground state fac­

torization. From the results of Chapter 2 and using Eqs. 6.2-6 and 6.2-5, 

*ES we have that the ES factorization relations for S(j il lljjare 'o o' 

ES m m" o 
m (J 

m. 
[]'] 

' jo L r\ 3 L j' 

r"o -a m' —m -a 

1 a 

^3 m® ̂3 « "3 
^} SC3^„lL|3^-)„ . 

3 m 
'ES 

(6.2-9) 

When j = m = 0, we must have j = L so Eq. 6.2-9 reduces to the simple 

fora (35) 

s(j/^|L|j'r),^ = (-1)^° 
'ES 

1 jo j' 

0 0 0 
S(U^lLlO£')gg . 

(6.2-10) 
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The simplicity of the above equation is because the intermediate cou­

pling parameter L provides a natural e3q>ansion parameter for S£ in terms 

of in Eq. 2.1-2 (35). 

The ES factorization relations of can be obtained 

similarly and in particular, the ground state factorization relations are 

T J+2 p 
S (io&olj'&') = I (-1) ([j'][jJU'l[L])" 

t jo j' 

0 0 0 

jo *0 .A' 

^o j' 
S*" CLAgjO&')gg . (6.2-11) 

These are more complicated than the relations Eq. 6.2-10 in that they in­

volve a sum. 

The ICS factorization relations for S(j^A^lLlj'S,') and S"^(j^Jl^lLlj '£,') 

can be obtained similarly and the ground state relations are (35) 

' t jo j'l L SL 
0 

\ o o  0  0  0  I 0  
S(LL|L|00)iQg (6.2-12) 

and 

V-l+L • , % 
S Uo^olj'^'^IOS = I ̂  (-1) ([]'][&'] []_][&_]&]) 0 0 

t jo II. I A'' 0 
< 

jo^o 
0 0 0 10 0 0 r j' 

S°(tL|00) 
ICS 

(6.2-13) 
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Again, the relations for the Tot-J reduced S-matrix are more complicated 

than those in the Tr-Int coupling scheme. 

6.3. Phenomenological Cross Sections 

The calculation of transport and relaxation coefficients involves 

confuting bracket integrals which are matrix elements of the Boltzmann 

collision operator. Since the matrix elements are isotropic tensors, 

they are conpletely determined by their scalar contractions. Each scalar 

contraction, in turn, can be written as a linear combination of the 

spherical components of their irreducible tensorial parts, and the 

spherical components can be given in terms of the generalized phenomeno­

logical cross sections. The details of the derivation and the types of 

generalized phenomenological cross sections necessary to describe certain 

transport and relaxation phenomena have been thoroughly studied (45-50, 

80-81) and will not be repeated here. The expression for the generalized 

phenomenological cross sections for the atomrdiatom system written in 

terms of the reduced S-matrix elements in the Tot-J co%q>ling scheme is 

(46) 
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Vf liJf 
Tot-J -f. l 

k: 
(-1) V4 

JiJf 

k, 

0 0 0 

f 

0 0 0 

"^fl l^f "^fl 

x^ji jgjjf^f(^f^ P ^ E i ^ i I ^ ^ '  X. 

(6.3-1) 

In this expression, primed and unprined quantities are, respectively, pre-

and postcollisional quantities, and the i and £ denote the initial and 

final states of spectroscopic transitions which occur during a collision; 

E is the total energy and is the pre collision wave number corresponding 

to the initial translational energy; K , K , and R are the rotational, 
3  ̂

orbital (from velocity), and total tensor indices. 

Here, the rotational and orbital tensor indices couple as in Eq. 

6.2-1, that is 

K* + Kl - K . 
_1 -

(6.3-2) 
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The Tot-J coupling scheme is the natural choice for the S-matrix repre­

sentation. An alternative coupling scheme for the tensor indices, paral­

lel to that in Eq. 6.2-4, is 

and the corresponding cross sections are related to those defined in 

Eq. 6.3-1 by relations analogous to Eqs. 6.2-7 and 6.2-8 (81-82). We 

will return to this later. 

We can rewrite Eq. 6.3-1 in terms of the reduced S-matrix elements 

in the Tr-Int coupling scheme by substituting Eq. 6.2-8 into Eq. 6.3-1, 

to yield 

(6.3-3) 

(-1) 
^I+^j+jf+j.+Lf+L. •f i •'f -"i f i 

0 0 0  [ 0  0 0 

[JiltJf] 

(6.3-4) 
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where the energy labels on the S-matrlx elements have been suppressed. 

The sumnaticns on and can be performed using the relation of Eq. 

6.1-5 to yield 

^iJf Vf 4 ̂ 
44 ̂ f 

"f 4 

0 0 0 

4 ̂ 2 4 

0 0 0 

H-tK-Kj-K! 
I (-1) ^ J [H] 
H 

^j S ® 

KjK'E 

ji ^i; 

jf ̂ f ̂ fi 

4 4 ̂ i 

4 4 ̂ f 

^ \o %o - s*(ji4ltiljl4)]' 

(6.3-5) 
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where we have used the fact that the angular momentum quantum numbers 

are only integers in simplifying the phase factor. We can define modi­

fied cross sections 

JlL-il I 
^ J ̂  f i f 

44 ̂ f 

'4 4 Uf 

0 0 0 0 0 ji ̂ l^i, '^i ^i 

^f ̂ f ̂ f\ I ̂ f ̂ f ̂ f 1 

X [«L^O \o - S*(j^Jl.lL^lj^Jip] , (6.3-6) 

which are related to the original cross sections by 

"iV j-j-JiJf Jj_]g a 

The inverse relation is 

H4K-K^-K' 

[a]' 

KjK'E 

""jijf (H)lr-lnt. 

(6.3-7) 

•S'S . 
\^j S ® 

- I (-1) [K] K jljf (K)lot-J. 

(6.3-8) 

The cross sections defined in Eq. 6.3-6 are equivalent to the phe-

nomenological cross sections defined using the Tr-Int coupling scheme for 
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the rotational and orbital tensor indices (Eq. 6.3-3) (45,51). The Tr-

Int cotq>ling scheme is a natural choice for the reduced S-matrix repre­

sentation for this form of cross sections as is explicitly shown. The 

relations between the two forms of cross sections and the advantages and 

disadvantages in transport coefficient calculation have been considered 

by Chen et al. (81) and Hunter (82). 

6.4. Ground State Factorization 

It is a simple matter to derive es^ressionsfor the phenonenological 

cross sections in terms of S-matrices with arbitrary initial state 

(using the S-matrix factorization relations). However, here we consider 

more useful factorizations involving only phenomenological cross sections. 

We have seen that the ground state factorization relations of the 

reduced S-matrix elements in the Tr-lnt coupling scheme are simpler than 

those in the Tot-J coupling scheme. Consequently, here we will use the 

former since it leads to a less complicated derivation of phenomenological 

cross section factorization. 

In the ES, using the ground state factorization relations for the 

reduced S-matrix elements, Eq. 6.3-6 becomes 
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jf+ji 

44 

X ( I j ^ ] [ j ^ l [ j f ] [ j ^ ]U^ ]Uf ] [L^ ] [L^ ] )^  U^ IU^]  

K' V^ 

0 0 0 

4 4 

0 0 0 

s jf jf 

0 0 0 

K. KÎ H 

X [ô^^o \0 - S*CLg&f|Lg|02f) S*(L.&j^|Lj.|0y] . (6.4-1) 

When j^ = = 0, it is required that Kl = 0 so Eq. 6.4-1 reduces to 

KgH ;K^0 _ IT Y .4-4-V4 = -T- . 1 1 

% 

[H] 

4 4 4 

0 0 0 

4 4 

0 0 0 4 4 ji 

4 4 jf 

X [5j^0 0 - SCjf^fhf 1 oip s*(j.Ji^lj.|oy3 . (6.4-2) 

Using Eq. 6.4-2, Eq. 6.4-1 becomes 
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( [JP Ij^l [jf ] [j^] [L^] [V 

* 0 0 0 0 0 0 

if jf ii 31 j i V ;4o 

J-j j-i ^ T T n n i •'i "1/ " 0 0 
(H) 

Tr-Int , 

(6.4-3) 

where is the pre collision wave number corresponding to the initial 

translatimal energy of the input states. This is the ground state fac­

torization of the generalized phenomenological cross sections. The 

spectrocopic coefficients of these factorization relations depend only on 

the quantum numbers and the tensor indices of the internal motion. This 

is a consequence of two features. First, there is no coupling between 

the internal and translatimal state angular momenta in the spectroscopic 

coefficients of the ground state factorlzatlca relatlms of the reduced 

S-matriz elements in the Tr-Int coupling scheme. Second, the intermediate 

coupling parameters and are natural parameters for the spherical 

harmonic expansion of the conserved angles of the internal coordinates 

in the ES (See Sec. 6.2). These factorization relations have been ob­

tained previously by Cooxabe and Snider (51). 

In the ICS, results Identical to Eq. 6.4-3 can be derived (51). In­

stead of Eq. 6.4-2, we have 
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K.H ;K'0 2 -i [All [£! ] [H J [£^1 

% 

4 

0 0 0 

4 \ "i 

0 0 0 

jf 2^ 

0 0 0 

ji \ 

0 0 0 \ ^i 

ilf j. 

X [à.^Q 5j^o - SCjfjfliflOO) S*(3^j^ij^l00)] . (6.4-4) 

The corresponding lOS ground state factorization relations are Identical 

to the ES results since only locality of the S-matrix in internal co­

ordinates is used to derive these relations. 

6.5. Orthogonal Approach to General Factorization 

In this section, we will consider general state factorization 

using the orthogonal approach described in Chapter 5. The matrix 

approach will be considered in the next section. 

To develop the general state factorization relations, we invert Eq. 
K.H ;K'0 

6.4-3 for Q Q ^^^Tr-Int the orthogonality properties of 

the 3n - j symbols. We multiply both sides of Eq. 6.4-3 by 

[Kj][K]] ([L[][Lp'^^ 51 L; 
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and sum over and using the orthogonality relation of the 9-j sym­

bols (Eq. 6.1-2) to obtain 

KjK-H 
J. K.K ;K:K' 

I / 'J jjf jjjl (H^Tr-Int 

jf jf Ifl 

4 jf jf 

0 0 0 

4 ji 

0 0 0 

K H ;K'0 

^LÎLl 0 0^®^Tr-Int* 'if 

Next, we multiply both sides of Eq. 6.5-1 by 

(6.5-1) 

(-1) ̂  ([jg]) 
4 jf jf 

0 0 0 (-1) ̂  
H ji n 
0 0 0 

and sum over and using Eq. 5.1-5 to yield 

o'o  ̂̂ 

[H][j^][j'] 

4 jf jf 

0 0 0 

^i 

0 0 0 

KjK'E 

3i 31 

jf jf 4 
jijf i[5'^ (^^Tr-Int • 

(6.5-2) 
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When = Lj = 0, Eq. 6.5-2 becomes 

0 0 0 0 ̂ °^Tr-Int 41 
([Kj£^ K/j;K[K! 

kg tJiltjfl iiif (O^Tr-Int ' (6.5-3) 

where K! ranges over all possible values for which j', jl and KÎ satisfy 
J it i 

the triangular Inequality. The relation of Eq. 6.5-3 can be interpreted 

as a statement of the constancy of the "degeneracy averaged" elastic 

generalized phenomenological cross sections in the ES and ICS approxima­

tions. 

If we substitute Eq. 6.5-2 into Eq. 6.4-3, we have the general 

factorization relation 

K^K^;K^K' k^, y 

Ji^f ^ ^Tr-Int ^2^ 

% 

I (-1) 

% 

jf+3i+jf+ji 

Lf jf if 

0 0 0 

\ ji n 
0 0 0 

[L^][Lf][K^][K!] 

^f jf jf 

0 0 0 

^i ji ji 

0 0 0 

KjK'H 

ji \( 

h jf 

K^K^H 

ji n \t 

jf jf ̂ fl 

% % *)Tr_Int (6.5-4) 
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When = 0, we recover Eq. 6.4-3. When and 

Eq. 6.5-4 cannot be reduced to simple form. Note that, to generate a 

generalized phenomenological cross section with a given set of tensor 

indices, besides requiring cross sections of all possible final rotor 

states for a given initial rotor state, we also need cross sections 

of all possible rotational tensor indices. One anticipates using the 

factorization realtions in predicting cross sections for cases where the 

input cross sections are not obtained from the ES and lOS approxima­

tion. Thus from the computational point of view, it may be better to 

use the ground state factorization relations because of their simplicity. 

However, from the results of the degeneracy averaged cross sections anal­

ysis in the atomrdiatom and diatom-diatom systems, we mi^t expect that 

the predictions become less accurate as the input state is removed from 

the predicted state. Ihis needs to be tested numerically. 

In the above analysis, we have obtained a factorization that has 

"input data" derived from transitions out of the arbitrary state 

By interchanging the roles of with we also have factorizations 

that have "input data" derived from transitions into an arbitrary state 

IJf. 

6.6. Matrix Approach to General Factorization 

We now consider the possibility of using the matrix approach to de-
KjjK 

velop the general state factorization relations for a (H)_ _ . 
3iJf Ji^f 

For a given set of tensor indices and K^, the ground state factoriza­

tion relations of Eq. 6.4-3 can be written in matrix notation 
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S(j^j^lK'K^H) = M(j^j^lK*KjH) -8(00|OHa) , (6.6-1) 

where 

K„K^;KÎKÎ 
lia'jilK'K H)] = o & j' & j (H) , 

i f  2  i  J j J f  
(6.6-2) 

If jf jf 

0 0 0 

^i^i 

0 0 0 

KjK'E 

ji 31 , 

jf jf ̂ f 

(6.6-3) 

Here, the labels of the tensor indices and have been suppressed. 

The structure of the matrix M is determined by the 3-j and 9-j 

symbols of Eq. 6.6-3 which vanish unless 

(a) the triads (L^ j*), (L^ j^), (Kj jg), (Kj jp» 

(H Lj) and (K^ K* H) obey the triangular inequalities 

and 

(b) Lg + + jf and are even. 

The structure of M ran be easily determined from these conditions. 

T&e techniques described in Chapter 3 can be used to invert Eq. 

6.6-1 for some contlnations of the tensor indices K^and H. Before 

giving a detailed discussion of this procedure, we first compare the 

factorization relations which would result from the matrix approach to 

those obtained from the orthogonal approach. 
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The general state factorization relations obtained from the matrix 

approach are of the form 

(6.6-4) 

where M is the "inverse" of M(j^jJ|K^K^H). These rela­

tions are far simpler than those from the orthogonal approach (Eq. 6.5-4). 

Instead of requiring input cross sections with whole ranges of rotation­

al tensor indices and , we only need cross sections with a given 

KÎ and K^. Numerically, Eq. 6.6-4 has a great advantage over Eq. 6.5-4 

-1 as long as ̂  is not very difficult to generate. We now consider a few 

-1 simple cases ̂ ere M can be easily determined using the tediniques dis­

cussed in Chapter 3. 

The s inkiest case of Eq. 6.6-1 is lAen = H = 0. The cor­

responding cross sections are very similar to the degeneracy averaged 

cross sections discussed in previous chapters and 

iMCj'j'lOOO)]. ([j'][j][L])^ 
L j j' 

0 0 0 
(6.6-5) 

Matrix M has Type A structure (cf. Chapter 3). The general factorization 

can be easily written down using the appropriate procedures. 

When K* = = 1 and H = 0, the matrix elements of M are given by 
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9 J, 
jj"'" 4 J.4 ij-T J.1 i i TT i  ̂
o 

"i f'-'i-'f k: 

ji+ji+\+l 

3 

'^f jf jf) 
< 

h ^i' 
o o 0 o o 0 ^f jf " % 

(6.6-6) 

Because of the présence of the Kronecker delta 5^ ^ the number of non-
hh' 

vanishing conçonents of the vector ̂ (00j000) on the r.h.s. of Eq. 6.6-1 

is much smaller than that for ̂ (j^j^jUO) for i.e., MCj^j^jllO) 

are not square matrices. This m^ces the inversion of Eq. 6.6-1 rather 

difficult. But, when = j' ve must have 

[MCj'j'lnO)] (6.6-7) 

This relation follows readily from the triangular inequalities implicit 

in the 3-j and 6-j symbols in Eq. 6.6-6. The matrices M(j * j ' 1110) have 

Type A structures and the first row consists of all zero elements (see 

Fig. 6.1). 

To conclude this section, we consider one more case, namely Kj = 

K. = H = 1. For = jg, M(j^j^jlll) has Type B structure (see Fig. 6.2.). 

Thus, procedures appropriate for this kind of structure can be used to 

derive the factorization relations. 

6.7. Other Factorizations 

So far, we have considered only the factorizations of the cross 

sections in the Tr-Int coiq>ling scheme. Factorizations in the Tot-J 
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(jl jf) 

(4 L,) 

00 11 22 33 44 55 66 77 88 

Fig. 6.1. Structure of M(j'j'lllO), for j* = 2 

coupling scheme can be obtained from the former by using the transforma­

tion relations of Eqs. 6.3-7 and 6.3-8. 

The egressions for the Tot-J coupling scheme factorization rela­

tions are very complicated. It turns out that factorization relations 

in the Tot-J coupling scheme which differ from those just mentioned, can 

be obtained directly without using the Tr-lnt coupling scheme as inter­

mediate in the ̂ -initial and it-final lOS approximation considered by Fitz 

et al. (46). 

The (.-initial lOS expression for the Tot-J coupling scheme cross 

section is (46) 
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(Li Lp 

01 10 11 12 21 22 23 32 33 •• •• 

(3i jf) 

Fig. 6.2. Structure of ̂ (j^j^llll), for = 11 

X,+A,4K.-HC'+j.4j: K K •K K 

\ V^f 

31 jf ^ 

^f 

K K« 

^Xf-Xi 0 \'h 

K KS K! ' 
] 

i Xg—X^ 0 X^-X^ 

% 

ji ̂ i 

O D D  

hh ' 

n & 
0 0 0 

i o  0  0  

jf jf Lf 

-Xj Xg 0 

ji \ 

i"\ \ ° ' 

I Jl * 

<«^0 %o - % hi > • (6.7-1) 
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^ analogous expression in the A-final lOS approximation can be obtained 

if the In the last 3-j symbol is replaced by K^. The two expressions 

are equal only If 

t • — — When = 0, Eq. 6.7-1 reduces to 

K„K,;KI0 rj' & ^ K-%'+j , 

"d.Jf 0 0 ^ ' (UJUflPJl) ' 

^i ̂ f 

0 0 0 

% ̂2 ̂  j 

0 0 0 

X I [&,][&.] 0 0 0 

I i-i* 
«3,0 «j,Q - ̂ 4 > ' 

(6.7-2) 

where the first two 3-j symbols vanish unless + jg + Kj and + 
KmKj ;K J 0 

Kj are even. This means that the A-initial lOS j"" q q 

vanishes unless and are even. Using the parity 

properties satisfied by the S-matrix elements, it can be easily shown 

that the parity of + Kj and K^ + K^ + K^ is the same. 

Equation 6.7-2 can be written in the form 

"j 

0 0 0 

-1 
% ̂2 

0 0 0 

-1 

JlJf 0 0 

k Ai^f 

4 

0 0 0 

A A^* 

(6.7-3) 
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which is well-defined when the cross sections are derived from the Z-

initial lOS approximation. When cross sections are derived from other 

methods, Eq. 6.7-3, in general, is not well defined, except In homo-

nuclear diatom systems with even K^. Using Eq. 6.7-3, we can rewrite 

Eq. 6.7-1 in the form 

a. 
JiJf 

(K) 
Tot-J I 

±h L^^f 

X ([K^][j^ll3^][ji][3fD 

ii jf 31 jf S 

Xf 

K Kj 

[^f-\ ° ̂ i"^f 

% 4 S \ 

X ^ — 0  

X ([L^llLj])' 
ji ̂ ii 

0 0 0 

jf 3f ̂ fl 

0 0 0 

3pf Lf, 

Vh h ® 

ji ̂ i 

l-x. x^ 0 

-1 -1. 

X 
0 0 0 0 0 0 0 0 (^Tot-J ' 

(6.7 
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An alternative factorization also exists. Instead of dividing both 

sides of Eq. 6.7-2 by 3-j symbols, we can use the orthogonality properties 

of the 3-j symbols (discussed in Chapter 5) to remove the first two 3-j 

symbols on the r.h.s. of Eq. 6.7-2 and thus obtain 

K. 
I (-1) : tK„][K.] 
V ^ J % 

:i jf ^j^ 

0 0 0 1 , 0 0 0 ^jijf 0 0 ̂ ^pTot-J 

= (-1)^^"^^^ ([j^][j^][Kp)"^ I [2^][y 

Vf 
0 0 0 

il £ * 
(6.7-5) 

Hence, instead of dividing by 3-j symbols, we introduce sums on the ten­

sor Indices K, and K.. Using Eq. 6.7-5, we have another factorization 
^ j 

relation 
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K^K.jK'K^ 
k" 

x.x. 
& if i f 

•[Kjj][Kj] 

X ([j^][j^][jilIjf]P 

Ji jf 

-Xi X^-A^, 

if S 

-\ \ 

K K„ K, 

V^i° V^f/ 

K K' K! 

vVXiO \-^f 

il ii if if 4 ' if if ̂ f^ il ii M 

X ([LJ[L^1)" 0 0 0 o
 

o
 

o
 

-Xf Xj 0 

o
 1 

' 

ii if 

\o 0 0 0 0 0 

;K.^0 

L.L^ 0 0 ^^pTot-J 
(6.7-6) 
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Other factorizations also exist. For exanq>le, if we let = 0 in 

Eq. 6.7-3, we have that 

ji jf 

0 0 0 

-1 

[K^] (-1) 
-Kô-j. OK';KÎO 

kg ^ V 0 0 0 

^i *f 

£ £ * 
(6.7-7) 

which is well-defined in the case of ̂ -initial lOS cross sections and in 

hononuclear diatonic systems with even for cross sections generated 

from other methods. The corresponding ground state factorization rela­

tions are 
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K Kj ;KIK! 

" ' 4 . 4  4f 

X ([3il[j^][j.][3f]P 
Ji jf K. ̂ , j! j' 

-Xi Xg 

Kj 

i-X^ ^i-^f 

V\ ° \'h 

/ K K' K' 

v^i° \'hi 

-I".. y. 
(-1) (tycy)'' 

0 0 0 

jf jf 

0 0 0 

jf jf 

-Xf Xg 0 

ji ji 

~\ \ ° 

4 

0 0 0 

-1 

0 K]^;Kj^O 

* 0 0 Tot-J* (6.7-8) 

Analogous results in the &-final lOS can be readily derived. 

Finally, we remark that general state factorization using the matrix 

approach is possible for some types of Tot-J phenomenological cross sec­

tions. 
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7. ES FACTORIZATION RELATIONS AND CONSISTENCY 

CONDITIONS FOR DISSOCIATIVE COLLISIONS 

In the present chapter, we consider the ES factorization relations 

and consistency conditions for collision-induced dissociation (CID) 

processes (36), which are isçortant in the kinetics of high-temperature 

gases. The corresponding exact factorization relations and consistency 

conditions and their reductions to the ES form will be considered in 

the next chapter. To conclude this chapter, we illustrate the useful­

ness of the ES factorization relations in predicting vibrational enhance­

ment/ inhibition in specific dissociative channels for the colllnear dis­

sociative process 

A + BC-»-A + B + C 

A truncated square well is used as the binding potential for oscillator 

BC. 

7.1. ES Factorization Relations and 

Consistency Conditions 

We are concerned with collisions between a nonreactlve projectile 

and a molecule which can dissociate. The projectile can be an atom or 

a nonreactlve diatomic or polyatomic molecule (e.g., a rigid rotor or 

a vibrator). Let be the Hamlltonlan for the separated projectile and 

molecule, and be the sum of Interactions between them, so the full 

Hamlltonlan for the system is 
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H = H + V.. (7.1—1) 
as 1 

As usual, the internal coordinates and the relative nuclear coordinates 

are denoted by _r and R, respectively. In the coordinate representation, 

the asymptotic bound state eigenfunctions of have the form 

<j>jjj^(r R) = ̂  R|%> = <r|M> <R|:^ = X^(R), (7.1-2) 

«here ()|^(r) is the internal wave function for bound state M and Is 

a plane wave of relative momentum The full scattering statesTjj^(x R) 

corresponding to R) are given by 

%(r R) = <r R|a-|l^. (7.1-3) 

The Moller operators, = £,im e through the corresponding 
t-»- CO 

T-matrices 

T" = R-, (7.1-4) 

can be used to calculate molecule bound state to bound state or bound 

state to breaki^ transition amplitudes by taking appropriate matrix ele­

ments between the H^-eigenvectors (see Appendix E). For breakup transi­

tions the H -bras correspond to as 

1.(2 R) = <r llaK + j» = <rliiK+> <R|^ » (7.1-5) 

^ere m labels the final internal state of the projectile and two or more 

molecular fragments and R are the corresponding relative asymptotic mo­

menta of these fragments. Of course, must be obtained by solving 
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the scattering problem for the corresponding molecular fragments. (The 

+ labels denote the boundary conditions taken for this scattering prob­

lem in the usual way.) 

If energy transfer or dissociation is induced by a suitable high 

energy projectile striking the molecule, then, we might anticipate a 

regime in which the internal nuclear coordinates of the molecules and 

projectile do not change significantly during collision (i.e., while 

Vj, operates). At such high energy, is impulsive in nature. Let H 

denote the full Hilbert space of the system and H = % ^int 

decomposition of the space into projectile-molecule relative and intern­

al parts. In the ES regime, the appropriate T-matrix elements with re­

spect to the regarded as operators on are local. Thus 

^,(r, r') =lj j.,(r) 6(r - r'). (7.1-6) 

The factorization relations and consistency conditions can be readily 

derived using the technique of Chan et al. (31). We will drop the k, k' 

labels for notational convenience. 

Since T~(r) <te(r) is in H. we can e^and this function in terms — ri — int 

of the complete set of H^-eigenfunctions in the space to obtain 

T"(r) (j>^(r) = I + % f ^ <nK,+|T-|M> (|>^(r). (7.1-7) 
M m — 

Suppose that r may be decomposed as (x, %) such that 4>^(x, %) is analytic 

in X at X = x^ with an order zero there, then (36) we obtain the con­

sistency conditions. 
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= 0 

»=x 
o 

(7.1-8) 

for n = 0, 1, ...» N - 1. 

These may be reduced to an equivalent family of independent linear re-

latimships with constant coefficients on taking inner products with a 

suitable complete set of functions in the 2 variables (cf. Chapter 2 and 

Ref. 31). 

For the factorization relations, we start with the trivial identity 

^ f 
<M^lT-ll!'> = J ta (T-(r) 4,g(r)) <7.1-9) 

and substituting in Eq. 7.1-7, we obtain the factorization relations 

(36) 

= I [4~(M' lîÔ]jj JJ <M|T"jîi> 
H o 

+ I f <K [A"(M'1m) ^ <nK+|T-|M> (7.1-10) 
m J o* — 

where 

IA-(M' . J dr ^ + CCI (7.X-11) 

and 

I <M1T~1M> 
M 

— +n ® <nK+|T-|M> 
dx I z=x m J 3x° « 
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j % +CCI. ".1-12) 

assuming H' and M are such that the integrals converge at infinity. 

Here | djr indicates that the integral with singularities associated 

with the zeros of (t>^(£) has been regularized (cf. Chapter 2 and Ref. 31). 

The CCI term indicates the relations Eq. 7.1-10 are invariant under the 

addition of suitable linear combinations of consistency conditions (as­

suming ES data is used as input). 

We now consider the question of convergence of the factorization 

matrix integrals at infinity. As a single example, we consider a col-

linear atom-oscillator system vhere the oscillator potential corresponds 

to a finite depth well and V(x) 0 as the internal stretch coordinate 

X ̂  00 (e. g., a Iforse oscillator). From an asymptotic (HKB) (61) analysis 

(ji^(x) ~ exp (- 1/b I dx •2y(V(x) - E^) 

~ exp (-1/k /2p|E^| x) as x-»• <» (7.1-13) 

where E^ < 0 is the energy of the excited state and U is the reduced 

mass. Thus 

- «P (1^1'^ - 1^ - l=M. iS:.) (7.1-14) 

as X ̂  
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so we require that |E^| ' - |E^ | - |E^, < 0 for convergence of all 
o 

the integrals in Eqs. 7.1-11 and 7.1-12 at x = «». We nay show this 

criterion for convergence applies to all systems where the molecular 

binding potential V(^) -»• 0 as ̂  If this constraint is not met, 

the divergences encountered cannot be regularized as were those cor­

responding to zeros of for ̂  ̂ Such restricticms on the range 

of the factorization relations is a feature not seen in the nonreactive 

case. A few regimes where this convergence condition is satisfied are 

listed below: 

a) if H* and M are all deep tigjhtly bound states so ~ 

~ %' 

b) if or ^ £^. This includes downward prediction 

c) for higher but sufficiently closely packed states with E^ , 
o 

Ejj, > ̂  (slightly upward prediction). 

A similar treatment to that described above shows that 

=  Ï  [ A V I Î Ô I ^ k  
M o—o* 

+ I f # ^ <i.K?lT-|M> (7.1-15) 
m •' or-o* — 

where expressions for the matrix elements are obtained from those in Eqs. 

7.1-11 and 7.1-12 by replacing <1»^ (r) with (j)^ ̂  (r). For convergence at 
o or-o 
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infinity, in this case, we cannot predict upwards (i.e., we require 

E^, £ ]^). In particular, ground state (M = 0) factorization relations 

cannot be used. 

Properties of the factorization matrix analogous to those described 

in Chapter 2 and Ref. 31 also apply here. Specifically (36) , 

[A~(M 1M)J^ - ôjjjji (7.1-16) 

[AV|M)^^5=O (7.1-17) 

A'<M'|M) - A-(M"|M) + OCT (7.1-18) 

where the "matrix" multiplication includes sum and integral parts and 

for Cauchy principal value integral choice of regularization 

A-(M|M) = I . (7.1-19) 

Again, if the T-matrlx elements predicted in Eqs. 7.1-10 and 7.1-15 

are on-shell by virtue of a suitable choice of relative state labels, then 

those input elements are in general half-off-shell (see Chapter 8 and 

Ref. 34). 

In concluding this section, we make some general remarks on the 

factorlzatltm relations (36) which are also applicable to the exact fac­

torization considered in the next chapter. We anticipate that the 

presence of the dissociation continuum should have little effect on the 

consistency conditions for state H and the factorization relations pre­

dicting bound state to bound state transitions associated with the states 
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M' and H when these states are all tightly bound, i.e., deep in 

the well. Specifically, under such conditions, Eqs. 7.1-8 and 7.1-10 

should, as a ccmsequence of the smallness of effectively 

reduced to the corresponding ES relations in Chapter 2 where dissocia­

tion is excluded (31). This simplification has been implicitly utilized 

in all previous calculatioos involving finite depth well (specifically 

Morse-oscillator) potentials (30, 66). The effect of the dissociation 

continuum will be more significant for states higher in the well. 

Finally, we note that the treatment given here may be readily 

extended to the case where both collision partners may undergo dissocia­

tion. For such, more complex systems, the ES approximation is less 

likely to be satisfied. 

7.2. Vibrational Enhancement/Inhibition for the 

Collinear CID of an Atom^Truncated Square Well Diatomic Oscillator 

The collinear model is widely used in various classical, semi-

classical and quantal studies of the CID process (83-91). One important 

aspect of the CID studies concerns the role of vibrational enhancement 

or inhibition, i.e., increase or decrease of the total CID probability 

(i.e., of transition from a given state to all possible dissociative 

channels) with the increase of the initial vibration state at fixed 

collision energy. In general, studies for truncated harmonic oscillators 

and more realistic oscillator binding potentials with exponentially re­

pulsive interaction potentials show vibrational enhancement near 
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namical threshold for dissociatlcKi and inhibition at higher collision 

energy. When the interaction potential becomes more impulsive, the 

dynamical threshold is lowered and the region of vibratiwal inhibition 

moves to lower collision energy (85). This explains why only inhibi­

tion is observed in the study by Ford et al. (87) in their truncated 

square well oscillator with inçulsive interaction study. 

In this section, we consider the collinear collision of an atom-

truncated square well diatomic oscillator in the ES approximation. We 

show now, once the spectroscopic factorization relation matrix elements 

are evaluated, under certain assumptions on the behavior of the T-matrix 

elements, we can predict vibrational in specific 

dissociative channels without any dynamic calculation of the transition 

probabilities. 

7.2.1. Model and eigenfunctions of the oscillator 

Let y be the reduced mass of the diatom BC and x the intemuclear 

separation of BC. The binding potential V(x) is given by (see Fig. 7.1) 

V(x) = " X i 0 

V(x) = -V^ 0 < X < a (7.2-1) 

V(x) =0 X >. a . 

From now on, the vibrational quantum numbers of the bound states 

will be labeled by m and the continuum state labels by k. Various choice 

of m and k will be distinguished by primes, overbars, subscript zeros, etc. 

The bound state (with internal energy < 0) wave functions have the form 
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V=0 

x= 0 x = a 

Fig. 7.1. Binding potential of diatom BC 

X <_ 0 

0 < X < a 

X > a 

where 

\ = <2y (V. -

"m ° \ V 

fz - i  ( V i V V' 
A ILL 01 m 

and the eigenvalues E are determined by the relation 

A sin 
m V 
D e 
m 

-PmK 
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cot q^a = - P^/Og^' (7.2-4) 

til Here, and are the wave numbers of the m bound state inside and 

outside the potential well, respectively. 

The continuum state (with internal energy > 0) wave functions 

have the form 

X ̂  0 

<Jj^(x) = ^ sin 0 < x < a (7.2-5) 

(^)^ sin (p^x + 6^) X i a 

where 

2» ,„C . „ = ((2u/0 (E^ + VJ)' 

Pk = iWith E^)^ 
(7.2-6) 

Pk 
^ V - V 

, c _ .2 h (Pk» + V 
^ sin q^a 

and q^, p^ are the wave number of continuum state k inside and outside 

the well, respectively and is the phase shift. For large E^, we have 

2 V-p^ » q^ and hence, 6^ = 0 and Aj^ * (•;jj) The continuum state wave func­

tions are normalized in a Dirac-delta fashion (87, 92). Note that be­

cause this is a one-dimensional problem with an infinite barrier at x = 

0, there do not exist separate incoming and outgoing continuums state 

(cf. the + labels in Eq. 7.1-5). 



www.manaraa.com

165 

7.2.2. Evaluation of the factorization matrix elements 

The bound state wave functions (|)^(x) are labeled by a single vi­

brational quantum number m which also gives the number of nodes in the 

wave functions. From Eq. 7.2-2, all the nodes are simple zeros and are 

inside the potential well. The consistency conditions on the T-matrix 

elements derived from transition out of bound state m are (36) 

I <m|T|m> <|)^(3^) + j d p^ <k|T|m> <|)^(3^) = 0, (7.2-7) 
m 

i = 1 to m 

where 3^ is the i^^ zero of 6—(x). The factorization relations predict-m m 

ing the bound state to continuum state T-matrix elements are (36) 

<k^lTlm'> = I [A(m'lm)]j^ ̂  <mlT|m> + f dp^ [A(m' |m)^ <k|T|m>, 
mo ^ o 

(7.2-8) 

where m > m', 

[A(m' |m) ^ = I®®®® 
a fOo\ 
+ + jdx 
0 

-BsBs -BsBs 
^i ^o 

(7.2-9) 

and 

[A(m' Im) = I 
•a >co 
. + 
0 J a 

(i)^(x) 4^ (x) (x) 

dx 

_ -BsCs . T®sCs 
= ^i + :o 

<fr|(x) 

(7.2-10) 
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Here, BsBs (BsCs) stands for bound state to bound state (continuum state) 

and label i(o) means inside (outside) the potential well. Cauchy prin­

cipal value integrals are used to regularize the integrals and 

^BsCs singularities associated with the zeros of (j)^(x). Evalua­

tion of these integrals is now outlined: 

(1) I®®®® and 1®®^ 
o o 

is given by 

D D , ^ca 

m c + p, o o 
o 

- p. cos (p, a + 6 )] (7.2-11) 
o o o 

where 

c = p p , - p <0. (7.2-12) 
mm m 

In general, the value of is small mless both | c| and 

p, are small. % 
jBsCs given by 

JsCs _ _ 1. ^m' ca A . B 

° ^ + (Pk - Pk + (Pk + PkJ^ 

(7.2-13) 
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where 

c = - P„. < 0 

A = cos(ô^-6^ ) {c cos[(p^-p^ )a] + (P^-P]^ ) sin[(p^-p^ )a]} 
o o o o 

-siii(6j^-ôj^ ) {c sin[CPj^-pj^ )a]-(p^-p^ ) cos[(pj,-Pj^ )a]} 

B =-cos(6^-ô^ ) {c cos[(p^+pj^ )a] + (p^ + P^ ) sin[(p^ + p^ )a]} 
o o o o 

+ sine5^ + 0^ ) {c sin[(p^ + p^ )a] - ^ GOs[(p^ + p^ )a]}. 
o o o o 

(7.2-14) 

In general, the value of f is small unless p^ = p^ and | c| 
o 

is small. 

(2) ij®®® and r BsCs 
i 

We now consider the integrals inside the well. In the ex­

pression. 

. „ 44 ra V 'k =' V 
T-BSCS O I  , o 

' "  ̂ 'o '(7.2-15) 

we make the replacement 

sin sin q^ x sin q^,x = sin O^x+sin G^x - sin O^x - sin 0^, 
o 

(7.2-16) 



www.manaraa.com

168 

where 

=1 - "k - % + V 
o 

L O 

(7.2-17) 

• V' 

^4 = 9k + Ok +V 

By replacing and in the above equations with and q^, 

respectively, we obtain expressions for 

To determine ̂ ^sCsy^^BsBg ̂ have to evaluate Cauchy 

principal value integrals of the form 

where A = q^, A = -^pA and 0 = . The Cauchy principal value 

integral in Eq. 7.2-18 can be evaluated numerically using 

quadrature (93) or analytically using contour integration. We 

consider only the latter method whidi elucidates the behavior 

of as a function of p^. 

Let 

z = e^®. (7.2-19) 
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Eq. 7.2-18 can be rewritten in the form 

a 
2tt 
I. fde •=°^ae-i-1 sin ne . _ a ̂  ̂ 

<0 sin A0 ^ E-4) h 

RfA-1 

C  1- 2  
2A 

(7.2-20) 

where is obtained from the unit circle, centered at the origin, by 

removing arcs of length e centered at each pole 

8j = jir/A, j = 1 

(7.2-21) 

From the residue theorem (94), Eq. 7.2-20 nay be written 

- % Im Aim 1 dz — 
m-A-1 

ir 

m 
— Im [iri Y R(z.) -

j=l ^ h i  Jc •'c . Jc 
o + 

_SH-A-1 
dz 

1 — z 

—  ] ,  

2A 

(7.2-22) 

where 

A 

R(Zj) 1 (7.2-23) 
2A 

is the residue at the pole z^. The contours referred to are shown in 

Fig. 7-2. 
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Fig. 7.2. Contour for the integral (7.2-19) with m - 2 

We have chosen the branch cut for the multi-valued functions in the 

integral of Eq. 7.2-20 along the positive real axis. 

If 

0 + A > 0 (7.2-24) 

the integral on C vanishes as r tends to zero for every 6. Since 
o o 

A > 0, this motivates choosing 

n > 0 

(which is always possible using sin (08) = - sin(-Q8)). 

(7.2-25) 
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The integral on C , where z = and as 6 approaches zero, 

may be evaluated using (95) 

-§ Im &im 
4c 

fl+'A—1 
dz = - — Im dx 

rl 12Tr(Qt-A) OfA-1 

1-z 2A 
I T  - lAtrA 2A 1 - e X 

a ^ sin 2ir (^Af2A&) _ j-

^ (&#Â+.2M) 
(7.2-26) 

which is a weakly converging series. However, from a congutational 

point of view, it is better to evaluate the integral directly numerical­

ly. In order to minimize the error in using the Gauss-Legendre quadra­

ture, again the choice Eq. 7.2-25 is desirable since it excludes the 

possibility that A + 0 " 0, where the integrand behaves like 1/x near 

the origin. Note that for large 0 and A, the value of the integral is 

small. 

Now consider the integral on C^, where z = xe iS So 

•'C. , 2A 9^0 m-A+2A& 2ATr 2=0 
1 — z 

)l=0 m-A+2A& 2ATr 2=0 

sin 2AÔ& 

2A6& 
2AÔ 

^_a_ 

2Air •'0 
ds sxn s 

a 

4Â 

(7.2-27) 

which is small for large A. 

Combining Eqs. 7.2-18, 7.2-20, 7.2-22, 7.2-26 and 7.2-27, we have 
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C  ̂ji 
for Î2 > 0, 

and the j summation arises from residue at each pole. Adding up contribu­

tions from the four terms ia Eq. 7.2-16, it follows that the inside-the-

well contribution of the BsCs integral is given by 

iBsCs = R + J- + j+ , (7.2-29) 

where R, J~ and J*" are the contributions from the residues, the inte­

grals on contour C_ and C^, respectively; R, f and J*" are given by 

* 4; m 
R = 4 A- ^ cos [(lnil-<ç) 

th m j~l nl 

+ sgn (2) cos [(l^gl-q^ -^1 - sgp (3) cos[(|0^|-q^)^] 

- cos » (7.2-30) 

V 
J"= ^ [sgn (1) l" + sgn (2) l" - sgn (3) I3 - (7.2-31) 

m 

J g ̂  •— [sgn (1) + sgn (2) - sgn (3) - 1]. (7.2-32) 
m % 
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We now consider the behavior of [A(m' |m) i-®-» (= 

+ in Eq. 7.2-10 as a function of k. In general, I^^^ is very 

small, except in the region around k = k^. Next, we consider the be­

havior of I^®^. In general for the systems that will be considered, 

J contribution to I^®^ is small. The behavior of and R contribu­

tions to I?®^ for different regions of k are analyzed below; 

First, consider the region of k such that < q^ - q^,. From Eq. 
o 

7.2-17, we have 

sgn (1) = -1, sgn (2) = +1 and sgn (3) = -1. (7.2-33) 

Using these relations, = 0 and 

* 4^ 4.. « 

R JTftZ jii (-1) sln(jTiqj^ /q^ cos(jliq^./<Ç) sinUjq^/q^). 
^ m o 

(7.2-34) 

Next, for the k values such that q^ - q^, ̂  q^^ ̂  q^ + q ,, we 
o o 

have 

sgn (1) = +1, sgn (2) = +1 and sgn (3) = -1. (7.2-35) 

From these, we have 

^ (7.2-36) 

which is typically small (see Sec. 7.2-3) and 
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V m . 
K 2 q^V (i'^W 

+ sin [jTT(q^ +q^,)/q;^] sin (jirqj^/q^) } . 
o 

(7.2-37) 

Finally, for the k values, such that + q^, (the a^nptotic 
o 

region), 

sgn (1) = sgn (2) = sgn (3) = 1 . (7.2-38) 

Hence, ve have = 0 and 

V i . 
R =-^= I (-1) sin(jTTq^ /q^) sin(jTrq^,/q^) cos(jTTq^/q;^). 

^ m j=l o 

(7.2-39) 

Note that, for large and k, and in the above equations can be 

1 H. ° 
approximated by (:jp (see discussion immediately following Eq. 7.2-6). 

Next, we compare the CCT terms in the factorization matrix elements 

and R in Eq. 7.2-39. The CCT terms arise from the consistency conditions 

of Eq. 7.2-7 and are in the form 

m m'k 
CCT^^ = ®(j) sin (jirq^/qg) (7.2-40) 

CO»® . C; ""O) 4^ sla 



www.manaraa.com

175 

\rtiere CCT^®^ (CCT^^^^) is associated with the BsCs (BsBs) factorization 

I— I— m'kn 
matrix element [A(m' |m) ^ ([A(m' |m) ^). The constants CH (j) , 

which may depend on m', k^, m and j, are arbitrary. Note R and 

both have sine function form w. r. t. in the region q^ < q^ - q^,, but 
o 

have different (cosine cf. sine) form in the regions q^ - q^, ̂  q^ ̂  

q^ + q^, and q^ > q^ + q^,. Thus, it is possible to cancel R (and 
o o 

consequently, i^Cs QJ. ̂BsCs since R is the dominant term) in the re­

gion q^ < q^ - q^, using the freedom of the arbitrary constants 

c2 ̂ (j). The appropriate choice of C^^(j) is 

m'k \ V 
C- °(j) — sin (jirq^ /q^) cos (jTrq^./q;^). (7.2-42) 

Tn m o 

We now consider a special case when q. is an integral multiple of 
o 

q^. In this " common g urate" case sin q^ x can be written in the form 

sin q^ X = sin n ̂ x = sin q^ • f(q^, (7.2-43) 
o 

when n is the integral multiple and f(q^) is a linear combination of 

sine and cosine functions with arguments m q^, where 0 :< m ̂  k (see 

Appendix F). Using Eq. 7.2-43, Eq. 7.2-15 becomes 

.ses r j dx (sin q^,x»f(q^)) sin q^x, (7.2-44) 

and since sin q^,x f(q^,x) is regular, = 0(l/qj,) as qj^ ̂  from 

the Riemann-Lebesque lemma (96). Thus periodic structure, like that 
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described in Eq. 7.2-39, does not appear, but complicated structure 

may appear In the region q^ <. (see Appendix F). 

So far, we have considered exclusively but similar treatment 

of I®®®® follows after replacing p^ with p^, q^ with q^ and A^ with A^. 

A different use of the CCT terms could eliminate all the transitimis 

m' -»• m with m in the region q^ < q^^^ - q^, in the input data (achieving 

a form of the factorization relations analogous to those in the matrix 

approach). 

7.2.3. Numerical results; factorization matrix elements 

The parameters for the two physical systems, TSWI and TSW II are 

given in Table 7.1. All quantities are given in atomic units (a.u.). 

System TSW I has been considered by Ford et al. (87) to model the diatom 

H2. System TSW II is used to model the diatom HI. The energies and 

the wave numbers inside and outside the well, q^ and p^, of the bound 

states m for both systems are given in Table 7.2 and 7.3. The TSW I (II) 

system has five (twenty) bound states. 

Sample numerical factorization matrix elements [A(m'lm)]j^ ̂  (= ]^®®®) 
o 

Table 7.1. Parameters for TSW I and TSW II systems In a.u. 

Parameter TSW I TSW II 

y 918.75 1822.6765 

a 2.94 3.0313 

V 0.0156 0.1175 
o 
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m 

0 
1 
2 
3 
4 

7. 

m 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

177 

Bound state energy levels £ and wave numbers q , p of 
system TSW I in a.u. ™ ® 

E Sa m 

-0.01505 1.0044 5.2589 
-0.01341 2.0065 4.9638 
-0.01069 3.0032 4.4324 
-0.006943 3.9884 3.5718 
-0.002304 4.9427 2.0577 

Bound state energy levels E and wave numbers q , p of 
system TSW II in a.u. ^ 

E m m 

-0.1172 1.0201 20.6738 
-0.1164 2.0402 20.5982 
-0.1150 3.0602 20.4715 
-0.1130 4.0801 20.2929 
-0.1104 5.0998 20.0609 
-0.1073 6.1193 19.7738 
-0.1036 7.1385 19.4291 
-0.09928 8.1574 19.0238 
-0.09444 9.1759 18.5540 
-0.08903 10.1939 18.0147 
-0.08305 11.2114 17.3998 
-0.07651 12.2281 16.7009 
-0.06942 13.2439 15.9074 
-0.06176 14.2586 15.0046 
-0.05355 15.2720 13.9719 
-0.04480 16.2834 12.7788 
-0.03550 17.2923 11.3765 
-0.02569 18.2972 9.6779 
-0.01540 19.2952 7.4927 
-0.004752 20.2762 4.1620 
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and lA(m'|m)]j, ̂  (= 3?®^) required in predicting <k |T|m'> using the 
o 

transitions out of m are presented In Table 7.4 and Fig. 7.3, respective­

ly. Here, TSW II Is used as Illustration and p. = 48 a.u. (q, = 
o o 

52.27 a.u.), = 0.6320 a.u. (compared to the well depth of 0.1175), 

m = 16 and m' = 15. In Table 7.4, inside and outside the well contribu-

tlms, and to are given in the first and the second 

column. The values of I" ^ are significant only for m = 14, 15, 17 

18 and these roughly sum to zero. Also for these m values, 1^^^® con­

tributes most in From Fig. 7.3, the major contribution to i®®^ 

comes from the residues R and the contributions from i®®^ and (in-o 

tegrals on contour in Fig. 7.2) are important only in the region 

around p^ - p^ . The behavior of the - p^ plot can be readily ex-
o 

plained using the analysis given in the last section. In the R-p^ plot 

(or - p^ plot), \dien p^ > 70 a.u., the periodic structures de­

scribed by Eq. 7.2-39 are clearly shown, they are hl^ly localized and 

the area under each of these structures is zero. (The latter follows 

2 i-
readily from Eq. 7.2-39 after replacing with (—) \) The structure 

around pj, ~ pj^ is described by Eq. 7.2-37. The area of the correspond­

ing structure in the i®®^ - p^ plot is no longer zero and it is about 

1. In this particular example, no structure shows 19 in the region 

\ ̂ 9k - Sn* ̂  \ plot. 
o 

Next, we examine numerical results for the commensurate case. 

Sample results of [A(m' |m) ^ (= %®®®®) for different m and lA(m* jm) 
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Table 7.4.* The BsBs factorization matrix elements [A(m' m)]kQm 

= if®®® + for various m in TSW II with p = 48 a.u., 
m = 16 and m* = 15 o 

m yBsBs 
i 

^BsBs 
o 

^sBs 

0 3.4844 (-4) -3.3929 (-4) 9.1506 (-6) 

1 -6.9827 (-4) 6.7778 (-4) -2.0489 (-5) 

2 1.0512 (-3) -1.0146 (-3) 3.6582 (-5) 

3 -1.4098 (-3) 1.3489 (-2) -6.0858 (-5) 

4 1.7781 (-3) -1.6798 (-3) 9.8354 (-5) 

5 -2.1630 (-3) 2.0060 (-3) -1.5700 (-4) 

6 2.5765 (-3) -2.3265 (-3) 2.5002 (-4) 

7 -3.0404 (-3) 2.6396 (-3) -4.0078 (-4) 

8 3.5970 (-3) -2.9438 (-3) 6.5325 (-4) 

9 -4.3337 (-3) 3.2367 (-3) -1.0970 (-3) 

10 5.4495 (-3) -3.5159 (-3) 1.9336 (-3) 

11 -7.4633 (-3) 3.7780 (-3) -3.6852 (-3) 

12 1.2033 (-2) -4.0187 (-3) 8.0141 (-3) 

13 -2.6659 (-2) 4.2323 (-3) -2.2426 (-2) 

14 1.2845 (-1) -4.4108 (-3) 1.2404 (-1) 

15 7.8669 (-1) 4.5430 (-3) 7.9123 (-1) 

16 0.0000 

17 -7.9340 (-1) 4.5848 (-3) -7.8882 (-1) 

18 -1.2872 (-1) -4.4001 (-3) -1.3312 (-1) 

19 2.3684 (-2) 3.8378 (-3) 2.7522 (-2) 

*The integers in the parentheses refer to the powers of 10 asso­
ciated with each number. Same notations are used in Tables 7.5-7. 
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/ 
J-

,BsC8 

0 .0  

0.04. 

0.0  

0.5' 

0.0.  

—0.5. 

—0 « 5 

~"~"wvWV| JUi-Jl 

"Mwvj ln̂ wxfxiii immrn^ 

p. (a.u.) 

H 
S  

Fig. 7.3. The variation of i®®^ and its components as a function of p. , for p. 
48 a.u. (E. = 0.6320 a.u.), m = 16 and m' = 15 in TSW II c 
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(= for different k are presented in Table 7.5 and Fig. 7.4 for the 

case = 2 q^. Results for qj, = 3 q^, 4 q^ are given in Table 7.6, 

Fig. 7.5 and Table 7.7, Fig. 7.6, respectively. Here, TS¥ I is used as 

illustration. As in the non commensurate case, the major contribution 

of the value of the matrix elements comes from the integral inside the 

well. The variation of as a function of p^ is predicted by the 

analysis given in the last section and in Appendix F. In the asyngitotic 

region, 1^^^ and almost cancel each other. Finally, we mention 

that the tna-g-iminn value of for the structure around p^ - p^ occurs 

at p, slightly less than p. . 

o B Cs 
Finally, in Fig. 7.7, we present a series of I ® - p^ plots for 

fixed (here, 2.75, i.e., noncommensurate) and m = 14 - 19, m' = 

m - 1. System TSW II is used. Except in the region p^ < 10 a. u., the 

plots in the series aire very similar. The similarity can be rationalized 

using the following reasoning. Consider the structures in the asymptotic 

region q^ > q^ + q^ (see last section). Here, is due mainly to R 

and from Eq. 7.2-39 it is given by 

^BsCs % (^-) J fC-1)^ sln(2.75 JIT) sin(JTRQ^,/q^) ] CO8(JTTG^/Q^) , 
% m j=l 

(7.2-45) 

2 where A^ = Aj^ = (^ has been used in the above relation. In Table 

7.8, numerical values of various and q^,/q^ ratios are listed. 

The ratios are fairly constant. From this, we can conclude that the fac-
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_ BsBs 
Table 7.5. The BsBs factorization matrix elements [A(m' | m) Ikg™ (= I 

for various m, for the commensurate case = 2q^, m = 3 

and m' = 2 In TSW I ° 

-BsBs BsBs BsBs 
m l .  I  I  

1 o 

0 -1.0187 8.689 (-3) -1.0100 

1 4.0669 (-2) -1.7445 (-2) 2.3224 (-2) 

2 -3.6200 (-2) 2.6197 (-2) -1.0003 (-2) 

3 0.0 

4 -1.4391 (-2) 3.6945 (-2) 2.2554 (-2) 
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0.5 - .BsCs 

0.0 

-0.5 

1.0 BsCs 

0.5 -

0 .0  

—0.5 -

1.0  - BsCs 

0.5 -

0.0 

—0.5 -

I I ' 1 I ; I I 

0 10 20 30 
(a.u.) 

Fig. 7.4. The variation of and (= + 

^sCs _ as a function of Pj,, for comr-

mensurate case = 2qj^, m = 3 and m' = 2 in TSW I 
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Table 7.6. The BsBs factorization matrix elements [A(m* |m) (= 
for various m, for the commensurate case » = 3q_, m = 3 
and m' = 2 in TSW I o 

-BsBs _BsBs -BsBs 
® ^i ^o ^ 

0 -5.8885 (-3) 7.3621 (-3) 1.4736 (-3) 

1 1.1874 (-2) -1.4836 (-2) -2.9612 (-3) 

2 9.1919 (-1) 2.2495 (-2) 9.4169 (-1) 

3 0.0 

4 -9.5101 (-1) 3.6788 (-2) -9.1422 (-1) 



www.manaraa.com

185 

0.5 

0.0 

-0.5 -

1 . 0  -

0.5 -

-BsCs 

-0.5 -

1 . 0  -

0.5 -

0.0 -

-0.5 -

rBsCs 

pBsCs 

—t 
10 
I  -|— 

20 
-|— 
30 

(a.u.) 

Fig. 7.5. The variation of I BsCs -BsCs , -BsCs 
, and I 

(= [A(m' |m) as a function of for commensurate 

case = 3q^, m = 3 and m' = 2 in TSW I 
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Table 7.7. The BsCs factorization matrix elements [Â(m*|m)]]c ̂  I ) 
for various m, for the commensurate case q, = 4q2, m = 3 
and m' = 2 in TSW I o 

m -BsBs 
^i 

j.BsBs 
o 

^BsBs 

0 -9.6313 (-1) 4.6387 (-3) -9.5849 (-1) 

1 3.1041 (-2) -9.4181 (-3) 2.1623 (-2) 

2 -2.3555 (-2) 1.4486 (-2) -9.0689 (-3) 

3 0.0 

4 -5.5893 (-3) 2.5718 (-2) 2.0129 (-2) 
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.BsCs 0.5 

0.0 

1.0 BsCs 

0.5 

0.0 

-0.5 

1.0 BsCs 

0.5 

0.0 

-0.5 

30 20 
p, (a.u.) 

Fig. 7.6. The variation, of and 

(= J.) as a function of Pj,, for commensurate 

case = 4qg, m = 3 and m' = 2 in TSW I 
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Table 7.8. Numerical values of various and q^,/q— ratios in 

m'/m 9m'/% 

13/14 1.001 0.934 

14/15 1.001 0.938 

15/16 1.002 0.942 

16/17 1.002 0.945 

17/18 1.005 0.948 

18/19 1.017 0.952 

tor inside the square bracket on the r.h.s. of Eq. 7.2-45, is fairly 

constant for m'/m ranged from 13/14 to 18/19. Going from m'/m = 13/14 

to 14/15, one more term is added to the j sum. This new term is rela­

tively small compared to the original sum of fourteen terms. Hence, the 

m'/m = 14/15 plot is qualitatively similar to the 13/14 plot except for 

the increase in the period of the structure. The change in the period 

is due to the change in in cos (jirq^/q^). Same argument can be used 

when one goes from m'/m = 14/15 to 15/16 and so on. If we fix the ratio 

of q^ and q^t > results similar to those given in Fig. 7.7 are also ob-
o 

tained. 

Throughout this series, the structures beyond Pfeo^Pko zero 

area and those at p^ - p^ have area ~1. Those in the region p^ ̂  10 a.u. 

have area «1 with the exception of the case m/m' = 15/14. Here, however, 

the area is "cancelled" by the BsBs elements. 
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7.2.4. Numerical results; prediction of vibrational 

enhancement/inhibition 

We now turn to the question of predicting vibrational enhancement/in­

hibition in specific dissociative channels and, in particular, we will 

examine the ratio <k^|T|m'>/<k^|T|m'+l>, for various continuum states 

k^. If the ratio is greater (less) than one, we have vibrational inhibi­

tion (enhancement). 

When the input and predicted Initial bound state are the same, 

J^(m'lm')]j^ ~ \ k [A(m' |m') Ik^m "= 0» Thus, whea m = m' +1, and 

there are many bound states, we might expect that the major contribution 

to 

<k^|T|m'> = j d Pj^ IA(®'j. <k|T)m'+l> + ... (7.2-46) 
o ' 

comes from those k close to k and the BsBs contribution to be rela-
o 

tively unimportant. In Eq. 7.2-46, the contribution from the BsBs input 

T-matrlx elements is not shown explicitly. 

Below we malro gome observations and assumptions pertinent to the 

development of the above ideas: 

(I) Studies show that relative kinetic energies of several times 

the well depth are often sufficient to guarantee dissociation 

(87-88) (i.e., the total probability of dissociation is ~1). 

(II) We consider here the relative kinetic energies are such that 

(1) is satisfied and also the collision is "sudden". 

(ill) For such a choice, we suppose an initial bound state m' 4- 1 
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and final dissociative state k can be chosen such that 
o 

(a) <ko|T|in'+l> dominates <n|T 
(Here, k© is such that 

m*+l> for all bound states n. 
_ T|m'> is on-shell, but we sup­

pose that the <ko | T | m*+l> roug^ily equals the corresponding 
on-shell quantity obtained by modifying the final pro­
jectile-diatom fragment relative momentum.) 

(b) We suppose that <k|T|m'+l> does not vary much over the 
width of one of the "ringing structures" in I®® (pj,) but 
also require <k|T|m'+l> becomes zero before a "large 
number" of these structures are crossed. The latter is 
reasonable since the period of these structures is basical­
ly determined by the well depth (but is smaller for low 
lying bound states). The maximum & for nonzero on-shell 
<k|T]m'+l> is bounded by energy conservation restraints; 
the off-shell quantity <k|l|m'+l> is expected to be rou^-
ly zero for k above the £ maximum. 

(iv) The above asstuiq>ti(ns imply that 

<k^|T|m'> = A(k^) <k^|T|m'+l> (7.2-47) 

where A(kQ) is the area of the structure at ^ the 

^BsCs _ plot. Here, we have used the fact that the other 

structures do not contribute significantly due to their approxi­

mate zero area and assumption (iii)(b). In fact, since these 

structures are even, at least for Pj, ~ Pj, , even linear 

<k|T|m'+l> behavior will not contribute to Eq. 7.2-46. 

(v) A convenient procedure for separating the contributing main 

peak at p. ~ p. from mixed in zero area structure and for IC JCq 

determining the corresponding A(k^) is illustrated in Fig. 7.8. 

The basic idea is to simply subtract the zero area asymptotic 

residue contribution (Asym R) from (Actually, Asym R 

only has zero area as a function of q^; plotted against p^ 

only the left-most structure has a small nonzero area, -0.003.) 
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Fig. 7.8. Procedure to determine A(k ). Here m = 16, m' = 15 and 
P^ = 65 a.u. for TSff II 
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A "nice" sharp main peak of width Ap = 2.6 a.u. centered at 

Pj, = 64 a.u. (cf. p^ = 65 a.u.) results. Finally, note that 
"o 

the area of the structure to the left of the main peak at p^ 

in the and - Asym R plots is less than 2% of 

A(Pk )• 
o 

(vi) It is important to note that our determination of A(p. } is 
•^o 

essentially independent of the choice of CCT since these 

all have (roughly) zero area, particularly in the region a-

rouad and beyond the main peak. 

Using the above procedure and Simpson-three-ei^ts rule (93) with 

a stepsize of 0.1 a.u., A(k^) is determined numerically every 2.5 a.u. 

for p. ranged from 40 a. u. to 135 a. u. Ihe peak width Ap starts at 
^o 

2.8 a.u. and levels off to 2.6 a.u. when p^^ 2 70 a.u. The variation of 

A(pj^) as a function of p^ is shown in Fig. 7.9 for m* = 15. 

The results indicate that A(k^) oscillates (sli^tly) between 0.959 

and 1.065 which means that <k|T|m*> should exhibit a corresponding 

oscillation. This oscillation is in (rou^ly) on-shell T-matrix ele­

ments, i.e., not in the off-shell quantities appearing in Eq. 7.2-46 

which we have assumed are "slowly varying." 

The fluctuation is greater in the lower p|^ region, and it approaches 

to one in the higher p. region. This means the bound state vibrational 
o 

energy is not very influential in the dissociation of the diatom with 

high relative momentum of fragments. 
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8. EXACT FACTORIZATION OF T-MATRICES 

We have discussed factorization relations and consistency conditions 

in the sudden approximations, the BA, the DWBA and the DWES approxima­

tion for nonreactive collisions. In this chapter, we will briefly re­

view the exact factorization of Beard et al. (34), which is closely 

related to the analytic approach factorization. The reduction of the 

exact to the ES factorization is also discussed. The exact factoriza­

tion for dissociative collisions and the reduction to the ES result 

given in the previous chapter are also discussed in this chapter (36). 

8.1. Nonreactive Collisions 

We follow closely the treatment of Beard et al. (34) in this sec­

tion. As usual, the internal coordinates and the relative coordinates 

are denoted by r_ and R, respectively. In the coordinate representa­

tion, the asymptotic state eigenfunction is 

<r RlM ̂  (r R) = <|)^(r) )^(R) (8.1-1) 

where M is the set of internal state quantum numbers and k is the vector 

for the translational motion, (j)^(r) is the internal state wave function 
fl — 

and X{^(R) is a plane wave. Let R) be the scattering wave func­

tion corresponding to ((i^(r) X^(R) and 

<r R1 b> = (r R) (8.1-2) 

be the bound state wave function for the composite system of two 
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particles (molecules). Using the local nature of the interaction po­

tential V(2 R), a set of consistency conditions follows after expanding 

V(r R) R) = <r R|T+|N^ (8.1-3) 

in terms of a complete set of R). Suppose that (r, R) may be 

decomposed as (x, %) such that (x, jg) is analytic in x at x = x^ 

with an order zero there, then the consistency conditions are 

I J dk ^ = 0 
'y=x 

for n = 0, 2, , N - 1 (8.1-4) 

(extending the result of Ref. 34), which may be reduced to an equivalent 

family of independent linear relationships with constant coefficients 

on taking inner products with a suitable complete set of functions in 

the 2 variable (cf. Chapter 2 and Ref. 31). 

For the factorization relations, we start with the trivial identi­

ty 

<M k I T  lM'k'> 0—0' ' — 

d-Mk 
= dR dr (V(r R) ̂  jj-^(r R)) ° ° 

(8.1-5) 

and expand the factor in parentheses in terms of the complete set of 

^(£R), to obtain (34) 
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<M^lT+iM'k'> = I f dk [AV*k'lMk)]jj ^<%|T+|M^ 
M ̂  o—o* — 

(8.1-6) 

where 

[A (M'k' |M k)]^ ̂  
o—o — 

Xk(R) Xfc (R) 4»^ (2) (r R) 

dR dr J 2 + CCT. 

Here •IJ dR dr^means that the integral, with singularities associated 

with the zeros of ^2 R) * has been regularized and the CCT is asso­

ciated with the flexibility allowed by the consistency conditions (cf. 

Chapter 2). In £q. 8.1-7, we assume that the fixed quantum states are 

chosen such that the integrals converge at infinity. Both on-shell and 

half-off-shell T-matrix elements are required as input in the above 

factorization relations. The coefficients of the consistency condi­

tions and factorization relations are no longer spectroscopic, that is 

they depend on the collision dynamics. 

Properties of the factorization matrix analogous to those de­

scribed in Chapter 2 and Ref. 31 also applied here. Specifically, 

aVs'IâglU ûv ° 6^. 6(k-k'), (8.1-S) 

A*(H'k' |« k) = A^(tf'k"|M k) + CCI (8.1-9) 
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and for Cauchy principal value integral choice of regularization 

A*"(M k|M k) = I . (8.1-10) 

In the ES, factorization with input data derived from transitions 

out of a given state is identical to factorization with input data de­

rived from transitions into the same given state. This is not true in 

the exact factorization. To derive the consistency conditions of the 
* 

latter type of factorization, we expand V(r^R) in terms of 

the complete set of complex conjugate full Hamiltonian eigenfunctions 

which include the scattering wave functions and the bound state wave 

functions of the colliding molecules. Again, let (x, be the de­

composition such that ((>jj ̂ (x, %) is analytic in x at x = x^ with an 

order zero there, then the consistency conditions are 

I I dk* <MklT'^|î^ 
M J 

3^ .+* 

3x" 
* Mk; x=x 

+ I <M k|v|b'> 
b x=x 

(8.1-11) 

for n = 0, 1, ..., N - 1, 

and the corresponding factorization relations are (34) 

<M'k' |T+|M^> = I I dk [B^(m'k'|Mk)]^ ̂  
M ̂  o o — 

+ I [B^(M*k' |Mk)]^^ ^ <M k|v|b> 
b 

(8.1-12) 
o—o. 
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where 

o-o 

R) 'iS k (r R) )^, (R) 4>J. (r) 

dR dr ^ * + CCT 

^ (8.1-13) 

and 

o—o 

.+ 
iPbtZ 1) % k Xfc.CR) 

= 11 dR dr 1=2 . + CCT. 
J J )q^(R) 4çj(r) (8.1-14) 

Again, we assume that the fixed quantum states are chosen such that the 

integrals converge at infinity. The properties analogous to Eqs. 8.1-8 

to 8.1-10 are also satisfied by the ̂ 's. 

Using the fact that locality of T in the ̂ variables implies that 

(see Appendix A) 

R) = V-^ ' (8.1-15) 

it is very easy to reduce the exact factorization relations and consis­

tency conditions to the ES form. Since Eq. 8.1-15 iiq>lies that the 

ES scattering wave function ^r^ R) has nodes whenever (^(r) has. At 

these nodes, the consistency conditions of Eq. 8.1-4 reduce to the ES 

form. If we choose k = k'and substitute Eq. 8.1-15 into Eq. 8.1-7, we 
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have 

[ A  (M'k'lM k')]jj Mk 
o-o — 

= I dr dr ô(k-k ) + CCT (8.1-16) 

and the factorization relation becomes 

<M k lT'^|M'k*> 
o-o' ' — 

I 
M 
I  dr 

4)^ (r) <l>M.(i) 

dr T-2-r + CCT 
%(z) 

<Mk 

(8.1-17) 

which is exactly in the analytic approach ES form with the translational 

states explicitly shown. The condition of identical initial kinetic 

energy in the input and predicted T-matrix elements is first recognized 

by DePristo et al. (30). The corresponding reduction of Eqs. 8.1-11 to 

8.1-14 can be readily shown using the fact that (34) 

= 0 (8.1-18) 
o—o 

and 

KM'k'lMk*) = A (M'k'lMk') . (8.1-19) 
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8.2. Dissociative Collisions 

As in the last chapter, we consider collisions between a non-

reactive projectile and a molecule which can undergo dissociation. Here, 

we use the same notation defined before (i.e., in Chapter 7). 

The exact factorization relations and consistency conditions fol­

low readily using the development of the last section. The potential V 

in Eq. 8.1-3 is now the sum of all interactions between the projectile 

and the molecule (i.e., in Eq. 7.1-1). Using the locality nature of 

V^, a set of consistency conditions follows after expanding Eq. 8.1-3 

in terms of a complete set of eigenfunctions of (the Hamiltonian for 

the separated projectile and molecule). Suppose that (r, R) may be de­

composed as (x, %) such that ;|^(x, %) is analytic In x at x = and 

has an order zero there, then the consistency conditions are (36) 

o 

o 

= 0 (8.2-1) 

for n = 0, 1, 
• • • 9 N - 1 

The corresponding factorization relations are (36) 
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<M k lTl~M*k*> o-o' ' — 

= I 1 & [AVk'|Mk)]jjk 
M o o — 

+ I f # f ̂  [A-(M'k'lM k)]jj k iriK k <=Ë+k|T-|Mk> 
m •' •' a-o* 

(8.2-2) 

where 

O-O 
* 

r  r  •  V - -  * M k  
= dR dr ^ + CCT (8.2-3) 

and [A~(M'k'1m k)]jj^^^nK k is obtained by replacing ((i^ in Eq. 8.2-3 

with (j>^ We assume M', k', M and k are such that the integrals 

converge at infinity. The exact B-factorization relations and consis­

tency conditims can be similarly derived. Relationships analogous to 

Eqs. 8.1-8 - 8.1-10 are satisfied by the A and B matrices. As for non-

reactive collisions, the reduction of the exact results to the ES form 

can be easily shown using the fact that locality of the T-matrices in 

the ̂ -variables ing^lies the factorized form of the scattering wave func­

tions (Eq. 8.1-15). 
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9. CONCLUSION 

In this dissertation, we have discussed the general state factoriza­

tion of molecular collision scattering information and applied the re­

sults to nonreactive and dissociative collision systems. There are still 

many unresolved questions concerning factorization. Th^ are summarized 

as follows. 

One important question concerns the best choice of regularization of 

the factorization matrix integral. For atom-diatom, degeneracy averaged 

cross sections for rotational transitions, the matrix approach works 

better than the Cauchy principal integral form of regularization. It is 

interesting to inquire as to whether this is true in general or whether 

there is another form of regularization which works even better. If true, 

how is it generalized to other types of systems and degrees of freedom? 

Another question concerns the number of consistency conditions in the 

matrix and analytic approaches. Why the two approaches do not have the 

same number of consistency conditions for the Type B matrix structure is 

unclear. 

In Chapter 5, we comment on the connection between the factoriza­

tion relations in the analytic and orthogonal approaches. Precisely, 

^at kind of regularization (i.e., the appropriate choice of CCT terms) 

which connects the two approaches is also not clear at this time. 

In the dissociative problem, we only consider the numerical calcu­

lations on the collinear atom-truncated square well diatomic oscillator. 

The next system we would like to study is the collinear atomi-truncated 
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Morse diatomic oscillator. We e3q>ect that the "ringing structure" of 

the factorization matrix elements is not a unique feature of the trun­

cated square well potential but also appears in a general diatomic bind­

ing potential system. In Chapter 7, we also discussed using the CCT 

term to remove "part" of the ringing structure. This brings us back to 

the question of best choice of regularization and CCT terms. 

Finally, throughout the dissertation, we approximated the input T-

matrix elements by on-shell quantities. Recent studies (97) indicate 

that it is true half-off-shell nature of the input T-matrix elements 

cannot be ignored. We would like to incorporate this effect iato the 

factorization relations in future studies. 
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12. APPENDIX Â. STATEMENTS ON THE ES, 

DHES AND DWBA T-UATRICES 

The following statements of the ES approximation are equivalent. 

(1) The T operator is local in the internal coordinates, r. 

(2) The T-matrix elements satisfy the linear spectrocopic fac­

torization relations and consistency^ conditions discussed in 

Chapter 2. 

(3) The scattering wave functions R) have the form 

%(r R) = . (12.1) 

Equivalence of (1) and (2) has been proved in Chapter 2. Here we 

prove equivalence of (1) and (3). Finally, we establish that locality 

in the distorted wave T-matrix implies locality in the full T-matrLx. 

The T-matrices defined in Eq. 1.3 satisfy 

where |<j)^> = If we assume locality of T" in r in Eq. 12.2, 

then 4^(2 R) have the factorized form of Eq. 12.1 where 

4(r|R) = f ^ . (12.3) 

Next, we show that wave functions having the factorized form of Eq. 

12.1, together with Eq. 12.2, imply locality of T~ in jr. We substitute 

Eq. 12.1 into Eq. 12.2, multiply by and sum over H to obtain 
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«(. r-r") V(r,8) q(r|@ - | œ' ^^,.g. •^(R') - (12.4) 

Then, after multiplying by and integrating over k we have that 

R,r"R" = j % <|)^(R") V(r,R) ^(rjR) . (12.5) 

We now consider the DWBA and WES T-matrices. The exact distorted 

wave T'-matrix defined in Eq. 1.10 satisfies 

V|4>=I'^|4.„^>. <12-6) 

and the distorted waves have the factorized form of Eq. 1.8. 

Since in both the SHBA and IXfES, T*~ are local in jc, one immediately 
+ 

obtains the factorized form of R) (Eq. 12.1) where 

^(r IR) = ^ 

This in turn implies locality of the full T. 
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13. APPENDIX B. GADSS-ASSOCIAIED LEGENDRE INTEGRATION 

AND GAUSS-JACOBI INTEGRATION 

13.1. Gauss-Associated Legendre Integration 

The associated Legendre function P™(%) Is a product of (1 -

and a polynomial of degree j-m; 

P?(x) = (1 - x^)^^ Pj®^(x). (13.1-1) 

Using Eq. 13.1-1, for a given |m| and the welgiht (1 - x^)™, we can de­

fine a sequence of polynomials which are orthogonal and in 

which (x) is of exact degree 1 on (-1, +1): 

pW, . dx(X -

'll ̂  'Mm ° 2(141.0 + 1 ' ̂Ik ' 

(13.1-2) 

From {pj^™\x)} we can define an orthonormal set (x) ) and (%) is 

given by 

^ j:^dx (1 _ xY [?(-)(%)]' ' 

p(m), The zeros of (x), {^} are just the internal zeros of the correspond­

ing associated Legendre function P°._(x), which are real, simple and DrMn 

distinct and lie in the interval (-1, 1). For a given m, we can define 
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the Gauss-associated Legeadre integration of order a: 

[ dx (1 - x^)° P(x) = I P(x^) , (13.1-4) 
J-l i=l 

where P(x) is a polynomial of degree less than or equal to 2n - 1 and the 

weights w are given by 
nm 

i ^ kn+l 1 
"nm k g(m), . -=Cm), (13.1-5) 

where is the leading coefficient of ^ich can be taken as posi­

tive 

= k^x^ + ..., k^ > 0. (13.1-6) 

To obtain Eq. 2.2-11, we make use of the Gauss-associated Legendre 

integration. Using Eq. 13.1-1, Eq. 2.2-10 is written in the form 

I 
]= m 

[11 Ci - m'l) 
2 (j + m'l )  (1 - Ocy..)")'" 

X  = 0 (13.1-7) 

For a given |m' |, let , , be the i'^ weights of the Gauss-associated 
j ® 

Legendre integraticm of order j* - |m'|> We multiply both sides of 

Eq. 13.1-7 by 

2<3 + K|)'-
"il-ii-l 

(1 - (x^,^,)^)M/^ 
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and sum on i using the Gauss-associated Legendre integration of preci­

sion 2(j' - |m'1) - 1, we obtain Eq. 2.2-11 after using Eq. 13.1-1. 

When m = 0, the Gauss-Associated Legendre integration considered 

here reduces to the Gauss-Legendre integration (62). 

% 
13.2. Gauss-Jacobi Integration 

A seq,^ce of Jacobi polyaonials {{ r 

X (x)j forms an orthonormal set with respect to the weight 

(1 - x)*^ (1 + x)^ in the interval (-1, 1). The zeros of P^°''^^(x), {x^} 

are real, distinct, simple and lie in the interval (-1, 1). For a given 

a and 3, we can define the Gauss-Jacobi integration of order n: 

I dx (1 - x)^ (1 + x)^ P(x) = I w^^g P(Xj^), (13.2-1) 

where P(x) is a polynomial of degree less than or equal to 2n - 1 and 

the weights w^^^g are given by formula analogous to Eq. 13.1-5. 

To obtain Eq. 2.2-25, we make use of the Gauss-Jacobi integration. 

Let a = k' - m', B = k' + m' and let be the i'^ weight of the 

Gauss-Jacobi integration of order j' - k* for a given a and 6. We multi­

ply both sides of Eq. 2.2-24 by 
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and sum on i using the Gauss-Jacobi integration of precision 2(j' - k') 

- 1, we obtain Eq. 2.2-25. Let a = 0 and 3 = 2k', Eq. 2.4-11 is ob­

tained similarly. 
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14. APPENDIX C. T-MATRIX FACTORIZATION 

AS IN REF. 32 

Hoffman et al. (32) started from the ground state factorization 

relations (22,25,26) 

= Î (-ir (u'lu^itLi) 

L j j'l 0 T (LlO), (14.1) 
0 0 0] i 0 m -m ^o" 

^ich are valid in both the ES and lOS for the representation of the T-

matrix chosen. The T-matrix element T£,^iii(j^ ] j ') is for transition j'm-* 

and is a common orbital angular momentum quantum number. The 

projection of the rotor angular momentum is conserved along the chosen 

quantization axis (but not along other axes). 

Using procedure similar to that described in Chapter 5, the general 

state factorization relations corresponding to £q. 14.1 are (32) 

JiU 

m * 0  o  

(14.2) 

(l j L j j ' 

0 0 0 0 m -m 0 0 0 0 m —m 

(14.3) 
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Setting j = 0 in Eq. 14.2, we recover Eq. 14.1. However, setting j = 

3 * > E(j * 1 j * ) does not yield the unit matrix. Using the fact that 

h \  o(4o) «w-
o o 

Eq. 14.1 is rewritten in the form (32) 

(14.4) 

•= Ï (-1) ([j'][],][!]) 
o L 

^ jo j' 

A 0 —X 

^ jo j' 

0 in -m 

(14.5) 

and the corresponding factorization relations are (32) 

(14.6) 
o o 

where 

tG(jMâ)l, 
m +m 
o 

Jo^o'J'^ L 
I (-1) ([jJ[j])ML] 

Ljoâ'^ 'LjoJ'l L 3 3) L j j' 

X 0 -X 0 m -m X 0 -Xj 0 m -m 

(14.7) 

The matrix G(j ' 1 j ') is an identity, but the factorization of Eq. 14.6 

does not preserve the symmetry (71) 

-T (j'lj,) 
o o o o 

(14.8) 
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which is satisfied by Eqs. 14.1 and 14.2. Ihe breaking of the symmetry 

originated from X being introduced in the 3-j symbol of Eq. 14.1 un-

symmetrically w. r.t. interchanging and j. 

Finally, we remark that the matrix approach discussed in Chapter 3 

can be used to derive the general factorization relations and consistency 

conditions starting with Eq. 14.1. 
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15. APPENDIX D. DERIVATION OF EQ. 6.1-5 

The relation given in Eq. 6.1-5 can be derived easily using the 

graphical methods of Tutsis, Levinson and Vanagas (YLV) (98). Here, we 

adopt the definitions of Brink and Satchler (99) for graph manipulation. 

They are not identical to those given by 7LV, but are related in a single, 

well defined way (99). To prove Eq. 6.1-5, we first show that the l.h.s. 

of the equation only differs from the 15-j symbol of the third kind 

(98) by a phase factor. The r.h.s. of Eq. 6.1-5 then follows by re­

writing the 15-j symbol in terms of 6-j and 9-j symbols (98). 

Some very simple graphs and their equivalent algebraic forms are 

given in Fig. 15.1. The most simple graph is the antisymmetric symbol 

:i 

% 

a,+nL, 
= (-1) Ô (15.1) 

'°l"°2 

which is denoted by a line with an arrow on it. The sign at each node 

of a graph indicates how the cyclic order of the connected lines is 

read. A -(+) sign means (anti) clockwise orientation. Very often the 

magnetic quantum state labels are siq)pressed in the graph. 

A typical graph consists of sum(s) of products of 3n - j and anti­

symmetric symbols which can be represented graphically by a diagram with 

n external lines. If the detailed internal structure of the graph is not 

important, it is convenient to represent the graph by a block. 

In Fig. 15.2, some useful rules (R.1-R.8) for transforming graphs 

are summarized. The first four rules concern adding or removing arrows 
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i^] ^2=2 Jl»! ^2™2 

^3 1^2 
=  6 .  .  6  

J 1^2 =1=2 

: r i  

J 3=3 

J 2=2 

3i ] 2 ^3 
Bij^ 

Fig. 15.1. Some simple graphs and their equivalent algebraic forms 
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Fig. 15.2. Some rules (R.1-R.8) for transforming graphs 
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in a graph. The fifth involves changing the orientation of the node. 

Rules 6 and 8 are the "summation rules" and rule 7 is the "multiplica­

tion rule." Note that, rule 6 is just a generalization of the ortho­

gonality relations of the 3n - j symbols discussed in Chapters 5 and 6. 

Finally, a graph has its value unaltered following any "deformation" if 

(99) 

(i) the direction of any arrow relative to the nodes it connects 

is unchanged, 

(ii) the sign of a node is changed if the cyclic order of the lines 

connected to the node is reversed. 

It is Important to know that, each rule given in Fig. 15.2 corresponds 

uniquely to some algebraic manipulation. For more discussion on graph 

transformations and the proof of the rules given in Fig. 15.2, the reader 

is referred to Bef. 99. 

There are five different kinds of 15-j symbols. Ibeir graphical 

representation, symmetry properties and algebraic expansions have been 

considered by Levinson and Chiplis (100) and YLV. Here we only consider 

the 15-j symbol of the third kind and its properties which are relevant 

to the proof of Eq. 6.1-5. 

The 15-j symbol of the third kind has the following symmetry proper­

ties (98) 
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g W 3l 

K L A - (-1) V K Lj 

' j' K^ K^ V^ L, g, j. 

g j^i  ^f  ^f  I  g r f  & ^i ^i |  

(-1) ̂  < Lj^ K Ig > = (-1) ̂  < I-f K ^i>y (15.2) 

'^i ̂ i ̂ j \ \ Hf ̂f 

where 

Si=(K'-Kp-(K^-K^). 

®2 = (j]. + jf - - Ui + 3f - - y » 

S3 = (j^ + j J + Kj + + ilj + Kp - (j^ + jg + K^ + Jl^ + + K^), 

(15.3) 

The symbol can be written in terms of 6-j and 9-j symbols as follows: 

Ui jf I 

Li K 

l3i Jli K' £• 

H-tK-K'-K. 
I (-1) 3 & [H] 
H 

(15.4) 
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Graphically, the 15-j syiAol of the third kind (denoted by Diagram J) Is 

given in Fig. 15.3. 

Fig. 15.3. 15-j symbol of the third kind (J) 

We now prove the formula in Eq. 6.1-5. Let H be the value of the 

l.h.s. of Eq. 6.1-5, which is written in the form 

T Ji+Jf 
H = 2- (-1) [JilCJfl Gg 63 6^, 

Vf 

(15.5) 

where 

[jf If 

4 

^1 ̂ 1 *^1 

L4 \ 

(15.6) 
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We first show that H only differs from J in Fig. 15.3 by a phase factor. 

The r.h.s. of Eq. 6.1-5 then, follows immediately after using Eq. 15.4 to 

rewrite the 15-j symbol in terms of 6-j and 9-j symbols. 

The Diagrams and G^ are combined in the given order using 

the multiplication rule (R. 7) to form F^. The sign of one of the nodes 

which connects the angular momenta (J^ ilp is changed using R.5. The 

same procedure is used for one of the nodes which connects the angular 
Ji+jI+^i+Jf+n+n 

momenta (J^ Jlp. Consequently, a phase factor (-1) 

is introduced (see Fig. 15.4). Using R.1 - R.4, the arrows on the lines 

associated with the angular momenta and are removed. After 
J.+J^ 

multiplying by the factor C-1) the sums on and 

can be performed to obtain F^ using the summation rule (R.6) (see Fig. 

15.5). Using R.1 - R.4, we can easily show that 

« - Fj - (-1) ^ J. (15.7) 

Note that, H in Eq. 15.5 is invariant when the primed and uaprimed vari­

ables are interchanged or when variables with symbol j and Z are inter­

changed. Also, H changes by a sign 

when variables with subscript i and f are interchanged. These symmetry 

conditions follow readily frrai the symmetry properties of the 15-j symbol 

of the third kind (Eq. 15.2). Finally, the r.h.s. of Eq. 6.1-5 is ob­

tained using Eq. 15.4. 
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16. APPENDIX E. EVAUJATION OF BREAKUP 

TRANSITION AMPLITUDES 

We verify that the breakup amplitude for the projectile-molecule 

system of Sec. 7.1 can be calculated by taking matrix elements of the 

T~ operators in Eq. 7.1-4 between appropriate -eigenstates. The 

corresponding S-matrix elements are 

^m K k, M k' ^^m K k^ k*^ (16.1) 

where the H-eigenfunctlons ^ ̂ correspond to scattering of the pro­

jectile and various fragments of the molecule. Since 

i4k''' i4k'' + k'> -k'» k-' 

where G~(E) = Aim G(E±ie) and G(z) = (z-H) we have 
eXH-

K k. » k' " * K k" ̂  k'' k''il*M k'* 

= , 2,1 ^ k') < K kl'i + 'i K k-®M k') "il&k-' 

' ' 5(E^ K k"^ k'> < K klrl^M k-' 

as required. 
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17. APPENDIX F. COMMENSURATE CASE ANALYSIS IN COLLINEAR 

CID OF AN ATOM-TRUNCATED SQUARE WELL DIATOMIC OSCILLATOR 

Assuming = nq^, where n is an integer, we have (95) 
o 

sin q^ X = sin q^ f(q^) = sin q^ [(2 cos q^) 
o 

- (2 cos q^" ̂ + (^2^) (2 cos q^)^ ̂ ^ * 

(17.1) 

Using this, Eq. 7.2-44 becomes 

A^ A^ A^, ^ 

jBsCs _ ^ I dx sin q^,x sin q^x [(2 cos q^^ ̂ 

- (2 cos ^ + (^^2^) (2 cos q^)^ ̂ 

(17.2) 

so I^®^ is significant around n different values of q^. These values 

are 

9k " 9^ - V' 9;;+ V' •••' %+qm' 

for even n (17.3) 

and 

V »  V '  + V »  '  '  Q m "  S H  +  S a "  

for odd n. (17.4) 

Note that not all these structures show up in the I^®^ - pj^ plot because 
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2 from Eq. 7.2-6 we must have q^ Z (V^ 2y/fc ) (see Figs. 7.4-7.6). Again, 

note that no significant structures in the region q^ > q^ . 
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